Abstract

We propose a novel magneto-optical approach for the repetition frequency stabilization of optical frequency combs. We developed a Yb:fiber mode-locked laser with a fiber-based magneto-optic modulator used to stabilize one of the longitudinal modes to an optical reference with sub-hundred mrad residual phase noise. This modulator does not induce mechanical resonances and as such has the potential to achieve much broader feedback bandwidths than conventional modulators used for cavity length stabilization.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Repetition rate stabilization of an optical frequency comb based on solid-state laser technology with an intra-cavity electro-optic modulator

Nicolas Torcheboeuf, Gilles Buchs, Stefan Kundermann, Erwin Portuondo-Campa, Jonathan Bennès, and Steve Lecomte
Opt. Express 25(3) 2215-2220 (2017)

Offset-free broadband Yb:fiber optical frequency comb for optical clocks

Takuma Nakamura, Isao Ito, and Yohei Kobayashi
Opt. Express 23(15) 19376-19381 (2015)

Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control

Kana Iwakuni, Hajime Inaba, Yoshiaki Nakajima, Takumi Kobayashi, Kazumoto Hosaka, Atsushi Onae, and Feng-Lei Hong
Opt. Express 20(13) 13769-13776 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
    [Crossref] [PubMed]
  2. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  3. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
    [Crossref] [PubMed]
  4. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
    [Crossref] [PubMed]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  6. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
    [Crossref]
  7. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [Crossref] [PubMed]
  8. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  9. H. Inaba, Y. Daimon, F. L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [Crossref] [PubMed]
  10. S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
    [Crossref]
  11. C.-C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
    [Crossref] [PubMed]
  12. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
    [Crossref] [PubMed]
  13. T. Nakamura, I. Ito, and Y. Kobayashi, “Offset-free broadband Yb:fiber optical frequency comb for optical clocks,” Opt. Express 23(15), 19376–19381 (2015).
    [Crossref] [PubMed]
  14. D. Fehrenbacher, P. Sulzer, A. Liehl, T. Kälberer, C. Riek, D. V. Seletskiy, and A. Leitenstorfer, “Free-running performance and full control of a passively phase-stable Er:fiber frequency comb,” Optica 2(10), 917–923 (2015).
    [Crossref]
  15. K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769–13776 (2012).
    [PubMed]
  16. C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
    [Crossref] [PubMed]
  17. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
    [Crossref] [PubMed]
  18. A. J. Barlow and D. N. Payne, “Polarization maintenance in circularly birefringent fibres,” Electron. Lett. 17(11), 388–389 (1981).
    [Crossref]
  19. R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
    [Crossref]
  20. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
    [Crossref]
  21. N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
    [Crossref] [PubMed]
  22. E. A. Mironov and O. V. Palashov, “Faraday isolator based on TSAG crystal for high power lasers,” Opt. Express 22(19), 23226–23230 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (1)

2012 (4)

2011 (1)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (2)

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

2008 (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2006 (1)

2005 (2)

2004 (1)

2001 (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

1989 (1)

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

1984 (1)

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

1981 (1)

A. J. Barlow and D. N. Payne, “Polarization maintenance in circularly birefringent fibres,” Electron. Lett. 17(11), 388–389 (1981).
[Crossref]

Anderson, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Assion, A.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Barlow, A. J.

A. J. Barlow and D. N. Payne, “Polarization maintenance in circularly birefringent fibres,” Electron. Lett. 17(11), 388–389 (1981).
[Crossref]

Benko, C.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Bethge, J.

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Cundiff, S. T.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Daimon, Y.

Diddams, S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Diddams, S. A.

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
[Crossref] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Eikema, K. S. E.

Fehrenbacher, D.

Fermann, M. E.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Frei, H.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hartl, I.

Higashi, R.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref] [PubMed]

Hirano, M.

Hollberg, L.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Holman, K. W.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Hong, F. L.

Hong, F.-L.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref] [PubMed]

Hosaka, K.

Hosaka, T.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

Hudson, D. D.

Inaba, H.

Itano, W. M.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Ito, I.

Iwakuni, K.

Jiang, J.

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Jones, D. J.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Jones, R. J.

Jørgensen, C. G.

Kälberer, T.

Katori, H.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref] [PubMed]

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kobayashi, T.

Kobayashi, Y.

Koke, S.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Kuse, N.

Laming, R. I.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

Lee, C.-C.

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Leitenstorfer, A.

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Liehl, A.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Matsumoto, H.

Minoshima, K.

Mironov, E. A.

Mohr, C.

Nakajima, Y.

Nakamura, T.

Nakazawa, M.

Newbury, N. R.

Nicholson, J. W.

Noda, J.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Okuno, T.

Onae, A.

Onishi, M.

Palashov, O. V.

Payne, D. N.

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

A. J. Barlow and D. N. Payne, “Polarization maintenance in circularly birefringent fibres,” Electron. Lett. 17(11), 388–389 (1981).
[Crossref]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Riek, C.

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ruehl, A.

Sasaki, Y.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

Schibli, T. R.

Seletskiy, D. V.

Steinmeyer, G.

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Sulzer, P.

Suzuki, S.

Takamoto, M.

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref] [PubMed]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Udem, T.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Ulrich, R.

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Washburn, B. R.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Yan, M. F.

Ye, J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30(21), 2948–2950 (2005).
[Crossref] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Electron. Lett. (2)

A. J. Barlow and D. N. Payne, “Polarization maintenance in circularly birefringent fibres,” Electron. Lett. 17(11), 388–389 (1981).
[Crossref]

J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, “Dispersion of verdet constant in stress-birefringent silica fibre,” Electron. Lett. 20(22), 20–22 (1984).
[Crossref]

J. Lightwave Technol. (1)

R. I. Laming and D. N. Payne, “Electric current sensors employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (4)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

S. Koke, C. Grebing, H. Frei, A. Anderson, A. Assion, and G. Steinmeyer, “Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise,” Nat. Photonics 4(7), 462–465 (2010).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Nature (1)

M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84(22), 5102–5105 (2000).
[Crossref] [PubMed]

Science (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the magneto-optic effect as a pulse with circular polarization travels through a magnetic-sensitive medium. A group delay is induced by applying a magnetic field.

Fig. 2
Fig. 2

Design of the magneto-optic modulator. A toroidal coil with approximately 200 turns houses a 1-m long spun fiber, which was wound around 5 times. The toroid and the coils had diameters of 70 mm and 2 mm, respectively.

Fig. 3
Fig. 3

Experimental configuration used to demonstrate the performance of the MOM. The MOM was integrated into the mode-locked Yb:fiber laser. A beat-note between the mode-locked laser and the CW laser, which was stabilized to a high finesse cavity, was detected with a photodetector. The RF spectrum of the beat-note was measured by an RF-spectrum analyzer. Feedback was carried out to the PZT (slow: < 10 Hz), the current of a pump laser diode (fast: < 100 kHz), and the MOM (fast: < 300 kHz). SMF, single-mode fiber; WDM, wavelength division multiplexer; YDF, ytterbium-doped fiber; PBS, polarization beam splitter.

Fig. 4
Fig. 4

(a) Free-running RF spectrum of the beat-note between the mode-locked and CW lasers. frep:Repetition frequency. (b) Spectrogram around the frequency of an optical beat note. MOM was modulated with 1-Hz sinusoidal current with a modulation depth of 0.8 A. (c) FFT spectrum of the ridge of the spectrogram. Peak-to-peak optical beat modulation depth (left axis),. corresponding peak-to-peak repetition frequency modulation depth (right axis).

Fig. 5
Fig. 5

(a) Phase-stabilized RF and (b) phase noise spectra of the beat-note between the mode-locked and CW lasers. Blue lines correspond to phase stabilization via modulation of the current of the pump laser diode and the PZT, while red lines were acquired when additionally using the MOM for feedback. The integrated phase noise from 100 Hz to 3 MHz improved from 128 mrad down to 92 mrad when additionally using the MOM.

Fig. 6
Fig. 6

(a) Electronic circuit equivalent to the MOM. The toroidal coil and the resistor formed a LR low-pass filter. The resistor was used as a voltage-to-current (V-I) convertor. (b) Frequency response of the LR low-pass filter as measured by a network analyzer. Amplitude was converted into calculated stroke per current. The cutoff (3-dB) frequency was approximately 1 MHz.

Metrics