Abstract

In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called “perfect lens” is demonstrated to be a limiting case.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides

Mina Azari, Mohsen Hatami, Vahid Meygoli, and Elham Yousefi
Appl. Opt. 55(31) 8651-8656 (2016)

Focusing of electromagnetic waves by a left-handed metamaterial flat lens

Koray Aydin, Irfan Bulu, and Ekmel Ozbay
Opt. Express 13(22) 8753-8759 (2005)

Vacuum induced transparency in metamaterials

Jing-Wei Fan, Jingping Xu, Mu-Tian Cheng, and Yaping Yang
Opt. Express 26(15) 19498-19512 (2018)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  2. T. Cui, D. R. Smith, and R. P. Liu, Metamaterials: Theory, Design and Applications (Springer, 2010).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [Crossref] [PubMed]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  7. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
    [Crossref] [PubMed]
  8. L. Xu and H. Chen, “Conformal transformation optics,” Nat. Photonics 9(1), 15–23 (2015).
    [Crossref]
  9. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  10. V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
    [Crossref] [PubMed]
  11. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
    [Crossref]
  12. Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
    [PubMed]
  13. Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
    [Crossref] [PubMed]
  14. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [Crossref] [PubMed]
  15. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
    [Crossref]
  16. Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
    [Crossref] [PubMed]
  17. S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
    [Crossref]
  18. Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
    [Crossref] [PubMed]
  19. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
    [Crossref] [PubMed]
  20. N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013).
    [Crossref] [PubMed]
  21. Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24(2), 1648–1657 (2016).
    [Crossref] [PubMed]
  22. S. Yu, X. Piao, K. Yoo, J. Shin, and N. Park, “One-way optical modal transition based on causality in momentum space,” Opt. Express 23(19), 24997–25008 (2015).
    [Crossref] [PubMed]
  23. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  24. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  25. H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
    [Crossref]
  26. Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
    [Crossref] [PubMed]
  27. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
    [Crossref] [PubMed]
  28. H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
    [Crossref]
  29. S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
    [Crossref] [PubMed]
  30. S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
    [Crossref]
  31. S. Longhi, “Bidirectional invisibility in Kramers-Kronig optical media,” Opt. Lett. 41(16), 3727–3730 (2016).
    [Crossref] [PubMed]
  32. D. Dragoman, “Complex conjugate media: alternative configurations for miniaturized lasers,” Opt. Commun. 284(8), 2095–2098 (2011).
    [Crossref]
  33. F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
    [Crossref] [PubMed]
  34. F. Liu and J. Li, “Gauge field optics with anisotropic media,” Phys. Rev. Lett. 114(10), 103902 (2015).
    [Crossref] [PubMed]
  35. L. Knockaert and D. De Zutter, “On the stretching of Maxwell’s equations in general orthogonal coordinate systems and the perfectly matched layer,” Microw. Opt. Technol. Lett. 24(1), 31–34 (2000).
    [Crossref]

2016 (3)

2015 (6)

S. Yu, X. Piao, K. Yoo, J. Shin, and N. Park, “One-way optical modal transition based on causality in momentum space,” Opt. Express 23(19), 24997–25008 (2015).
[Crossref] [PubMed]

F. Liu and J. Li, “Gauge field optics with anisotropic media,” Phys. Rev. Lett. 114(10), 103902 (2015).
[Crossref] [PubMed]

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

L. Xu and H. Chen, “Conformal transformation optics,” Nat. Photonics 9(1), 15–23 (2015).
[Crossref]

Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
[PubMed]

2014 (1)

Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
[Crossref] [PubMed]

2013 (3)

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

2012 (4)

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2011 (4)

D. Dragoman, “Complex conjugate media: alternative configurations for miniaturized lasers,” Opt. Commun. 284(8), 2095–2098 (2011).
[Crossref]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

2010 (3)

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

2009 (1)

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

2008 (2)

2006 (3)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

L. Knockaert and D. De Zutter, “On the stretching of Maxwell’s equations in general orthogonal coordinate systems and the perfectly matched layer,” Microw. Opt. Technol. Lett. 24(1), 31–34 (2000).
[Crossref]

Adegoke, J. A.

Artoni, M.

S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Bahoura, M.

Cao, H.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Chen, H.

Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24(2), 1648–1657 (2016).
[Crossref] [PubMed]

L. Xu and H. Chen, “Conformal transformation optics,” Nat. Photonics 9(1), 15–23 (2015).
[Crossref]

Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
[PubMed]

Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
[Crossref] [PubMed]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Chen, L.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Christodoulides, D. N.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Cubukcu, E.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

De Zutter, D.

L. Knockaert and D. De Zutter, “On the stretching of Maxwell’s equations in general orthogonal coordinate systems and the perfectly matched layer,” Microw. Opt. Technol. Lett. 24(1), 31–34 (2000).
[Crossref]

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dragoman, D.

D. Dragoman, “Complex conjugate media: alternative configurations for miniaturized lasers,” Opt. Commun. 284(8), 2095–2098 (2011).
[Crossref]

Eichelkraut, T.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Engheta, N.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Fang, A.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

Feng, S.

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24(2), 1648–1657 (2016).
[Crossref] [PubMed]

Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
[PubMed]

Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
[Crossref] [PubMed]

Ge, L.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Halterman, K.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Horsley, S.

S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kempa, K.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Knockaert, L.

L. Knockaert and D. De Zutter, “On the stretching of Maxwell’s equations in general orthogonal coordinate systems and the perfectly matched layer,” Microw. Opt. Technol. Lett. 24(1), 31–34 (2000).
[Crossref]

Koschny, Th.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

Kottos, T.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Kovanis, V.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

La Rocca, G.

S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lazarides, N.

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013).
[Crossref] [PubMed]

Li, J.

F. Liu and J. Li, “Gauge field optics with anisotropic media,” Phys. Rev. Lett. 114(10), 103902 (2015).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Liang, Z.

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Lin, Z.

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Liu, F.

F. Liu and J. Li, “Gauge field optics with anisotropic media,” Phys. Rev. Lett. 114(10), 103902 (2015).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

Longhi, S.

Mayy, M.

Mitchell, A.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Nguyen, V. C.

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

Noginov, M. A.

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, N.

Paudel, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Phelan, P.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Piao, X.

Podolskiy, V. A.

Prasad Sivan, V.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Ramezani, H.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

Ren, Z.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Reynolds, K.

Ritzo, B. A.

Rosengarten, G.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Shin, J.

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Soukoulis, C. M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Stone, A. D.

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

Sun, T.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Tsironis, G. P.

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013).
[Crossref] [PubMed]

Vitebskiy, I.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

Wang, H.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, L.

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21(S6Suppl 6), A1078–A1093 (2013).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Wegener, M.

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

Xu, L.

L. Xu and H. Chen, “Conformal transformation optics,” Nat. Photonics 9(1), 15–23 (2015).
[Crossref]

Xu, Y.

Y. Fu, Y. Xu, and H. Chen, “Zero index metamaterials with PT symmetry in a waveguide system,” Opt. Express 24(2), 1648–1657 (2016).
[Crossref] [PubMed]

Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
[PubMed]

Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
[Crossref] [PubMed]

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

Yi, F.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Yoo, K.

Yu, S.

Zhang, Y.

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Zhu, G.

Zhu, H.

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

Appl. Phys. Lett. (2)

Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98(11), 113501 (2011).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Microw. Opt. Technol. Lett. (1)

L. Knockaert and D. De Zutter, “On the stretching of Maxwell’s equations in general orthogonal coordinate systems and the perfectly matched layer,” Microw. Opt. Technol. Lett. 24(1), 31–34 (2000).
[Crossref]

Nano Lett. (1)

Y. Wang, T. Sun, T. Paudel, Y. Zhang, Z. Ren, and K. Kempa, “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells,” Nano Lett. 12(1), 440–445 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater. 9(5), 387–396 (2010).
[Crossref] [PubMed]

Nat. Photonics (3)

L. Xu and H. Chen, “Conformal transformation optics,” Nat. Photonics 9(1), 15–23 (2015).
[Crossref]

H. Zhu, F. Yi, and E. Cubukcu, “Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances,” Nat. Photonics 10(11), 709–714 (2016).
[Crossref]

S. Horsley, M. Artoni, and G. La Rocca, “Spatial Kramers–Kronig relations and the reflection of waves,” Nat. Photonics 9(7), 436–439 (2015).
[Crossref]

Opt. Commun. (1)

D. Dragoman, “Complex conjugate media: alternative configurations for miniaturized lasers,” Opt. Commun. 284(8), 2095–2098 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. A (1)

S. Longhi, “PT-symmetric laser absorber,” Phys. Rev. A 82(3), 031801 (2010).
[Crossref]

Phys. Rev. B (1)

A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[Crossref]

Phys. Rev. Lett. (11)

Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and D. N. Christodoulides, “Unidirectional invisibility induced by PT-symmetric periodic structures,” Phys. Rev. Lett. 106(21), 213901 (2011).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

F. Liu, Z. Liang, and J. Li, “Manipulating polarization and impedance signature: A reciprocal field transformation approach,” Phys. Rev. Lett. 111(3), 033901 (2013).
[Crossref] [PubMed]

F. Liu and J. Li, “Gauge field optics with anisotropic media,” Phys. Rev. Lett. 114(10), 103902 (2015).
[Crossref] [PubMed]

S. Feng, “Loss-induced omnidirectional bending to the normal in ϵ-near-zero metamaterials,” Phys. Rev. Lett. 108(19), 193904 (2012).
[Crossref] [PubMed]

Y. D. Chong, L. Ge, and A. D. Stone, “PT-symmetry breaking and laser-absorber modes in optical scattering systems,” Phys. Rev. Lett. 106(9), 093902 (2011).
[Crossref] [PubMed]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric Talbot effects,” Phys. Rev. Lett. 109(3), 033902 (2012).
[Crossref] [PubMed]

N. Lazarides and G. P. Tsironis, “Gain-driven discrete breathers in PT-symmetric nonlinear metamaterials,” Phys. Rev. Lett. 110(5), 053901 (2013).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

V. C. Nguyen, L. Chen, and K. Halterman, “Total transmission and total reflection by zero index metamaterials with defects,” Phys. Rev. Lett. 105(23), 233908 (2010).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Fu, Y. Xu, and H. Chen, “Inhomogeneous field in cavities of zero index metamaterials,” Sci. Rep. 5, 12217 (2015).
[PubMed]

Y. Fu, Y. Xu, and H. Chen, “Additional modes in a waveguide system of zero-index-metamaterials with defects,” Sci. Rep. 4, 6428 (2014).
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

H. Wang, V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, “Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting,” Sol. Energy Mater. Sol. Cells 137, 235–242 (2015).
[Crossref]

Other (2)

W. Cai and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

T. Cui, D. R. Smith, and R. P. Liu, Metamaterials: Theory, Design and Applications (Springer, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The parameter space for ε and μ. (a) Two dimensional (2D) plane with two axes corresponding to the real parts of permittivity and permeability, respectively. (b)Three dimensional (3D) space with loss or gain as new parameters. Three axes correspond to the real parts of permittivity, permeability and the imaginary part of permittivity or permeability, respectively.
Fig. 2
Fig. 2 Phase transformation from virtual space to physics space. (a) is virtual space filled with a medium of ε V and μ V . If the filled medium is located in the first quadrant in Fig. 1(a), then the electric field, magnetic field and propagating wave vector inside it form a right-handedness. For instance, the upper inset schematically shows the handedness of vacuum. (b) is physical space after the transformation of Eq. (8), and the transformed medium is ε' and μ' which are given by Eq. (9). In particular, when the medium in virtual space is vacuum, and when α=π and γ=0 , then the electric field, magnetic field and propagating wave vector inside the transformed medium form a left-handedness.
Fig. 3
Fig. 3 (a) The complex plane for CMs. The horizontal axis represents Re[ε,μ] ; for vertical axis, the upper axis indicates Im[μ] , while the lower axis is Im[ε] . The unit circle shows the studied CMs with ε =exp(iα) and μ =exp(iα) . According to the handedness, the purple color region indicates the CMs with positive refractive index ( 0α<0.5π ); the blue region shows the CMs with negative refractive index ( 0.5π<απ ). (b) The degeneracy handedness of EM wave in CMs with α=0.5π .
Fig. 4
Fig. 4 The refraction and reflection of TE wave incident from vacuum to CMs. (a) For 0α<0.5π , the propagation direction of the EM wave will not change as it passes from air to CMs. For the refraction wave, the red arrow shows the direction of wave vector (k), which parallels with that of Poynting vector (S) (see the yellow arrow). (b) For 0.5π<απ , negative refraction happens at the interface of air and CMs. For the refraction wave, the blue arrow shows the direction of wave vector (k), which is anti-parallel with that of Poynting vector (S) (see the yellow arrow). (c) The relationship between the reflection (refraction) coefficients and α.
Fig. 5
Fig. 5 The simulated electric field patterns for a TE plane wave obliquely incident to CMs with (a) α=0.25π ; (b) α=0.75π ; (c) α=0.49π ; (d) α=0.51π . The incident angle is θ in = 40 for all cases. In simulations, a perfect matched layer is added to the right side to avoid backscattering. In (b), the black arrows indicate the averaged power flow.
Fig. 6
Fig. 6 The scattering coefficients vs θ in and α. (a) Reflectance | r | . Three arrows shows the Fabry–Pérot resonances, where | r |=0 . (b) Transmittance | t | . (c) Both | r | and | t | vs θ in for α=0.25π . (d) Both | r | and | t | (in log scale) vs αfor θ in = 29 . The values in red spots in (a) and (b) are beyond that scoped by the color bars.
Fig. 7
Fig. 7 The amplitude A p =| a p | and A n =| a n | vs θ in and α. (a) and (b) are for A p and A n , respectively. (c) Both A p and A n vs θ in for a fixed α=0.25π . (d) Both A p and A n vs αfor fixed incident angles. The solid curves are for θ in = 29 , and the dashed curves are for θ in = 26 .
Fig. 8
Fig. 8 The simulated electric field (Ez) patterns for a TE plane wave obliquely incident unto a CM slab with (a) α=0.25π ; (b) α=0.5π ; (c) α=0.75π . In (a)-(c), the incident angle is θ in = 40 . (d) The scattering electric field (ScEz) patterns when a TE plane wave with θ in = 29 strikes unto the CM slab with α=0.5π . In (c) and (d), the white arrows indicates the time-averaged power flow. Here λ=1 and d=2λ . The amplitude of incident wave is unity.
Fig. 9
Fig. 9 The amplification of evanescent waves by the CMs. (a) The transmission coefficient of evanescent waves passing through a CM slab. Four curves are corresponding to four different α. (b) The same as (a) but on a log scale as α is very close to π. In calculations, we set λ=1 and d=2λ .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

×( E H )=iω( 0 μ V ε V 0 )( E H ).
( E H )=( κ 11 exp(i α 11 ) κ 12 exp(i α 12 ) κ 21 exp(i α 21 ) κ 22 exp(i α 22 ) )( E H ),
×( E H )=iω M 2×2 ( E H ),
M 2×2 = 1 detκ ( κ 11 exp(i α 11 ) κ 12 exp(i α 12 ) κ 21 exp(i α 21 ) κ 22 exp(i α 22 ) )( 0 μ V ε V 0 )( κ 22 exp(i α 22 ) κ 12 exp(i α 12 ) κ 21 exp(i α 21 ) κ 11 exp(i α 11 ) ).
E = κ 11 exp(i α 11 ) E , H = κ 22 exp(i α 22 ) H ,
×( E H )=iω( 0 μ ε 0 )( E H ),
ε = ε V κ 22 κ 11 exp[i( α 11 α 22 )] & μ = μ V κ 11 κ 22 exp[i( α 11 α 22 )].
E =exp(i α 11 ) E , H =exp(i α 22 ) H ,
ε = ε V exp[i( α 11 α 22 )] & μ = μ V exp[i( α 11 α 22 )].
r + = μ1 μ+1 =itan α 2 ,
t + = 2μ μ+1 =sec( α 2 )exp(i α 2 ),
r = μ+1 μ1 =icot α 2 ,
t = 2μ μ1 =icsc( α 2 )exp(i α 2 ).
r( θ in ,α )= i 2 sin(α)[ exp(2iϕ)1 ] cos 2 (α/2)+ sin 2 (α/2)exp(2iϕ) ,
t( θ in ,α )= exp(iϕ) cos 2 (α/2)+ sin 2 (α/2)exp(2iϕ) ,
exp(2iϕ)=1,
r( θ in ,α)=itanα & t( θ in ,α)=exp(iϕ)/cosα.
a p ( θ in ,α)= cos(α/2)exp(iα/2) cos 2 (α/2)+ sin 2 (α/2)exp(2iϕ) ,
a n ( θ in ,α)= sin(α/2)exp[i(2ϕ+α/2π/2)] cos 2 (α/2)+ sin 2 (α/2)exp(2iϕ) .
T= exp(Δ) exp(2Δ) cos 2 (α/2)+ sin 2 (α/2) ,

Metrics