Abstract

We report on the generation of continuous-wave, intra-cavity frequency-doubled, multi-mode laser radiation in an Yb:LuAG thin-disk laser. Output powers of up to 1 kW at a wavelength of 515 nm were achieved at an unprecedented optical efficiency of 51.6% with respect to the pumping power of the thin-disk laser. The wavelength stabilization and spectral narrowing as well as the polarization selection, which is necessary for a stable and efficient second-harmonic generation, was achieved by the integration of a diffraction grating into the dielectric end mirror of the cavity, which exhibits a diffraction efficiency of 99.8%. At a frequency-doubled output power of 820 W the peak-to-valley power fluctuations measured during 100 minutes of laser operation amounted to only 8.2 W (1.0%). The beam parameter product of the frequency-doubled output was 3.4 mm·mrad (M2 ≈ 20), which is suitable for standard beam delivery using fibers with a core diameter of 100 µm and a NA of 0.2.

© 2017 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).
  2. S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
    [Crossref]
  3. R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
    [Crossref] [PubMed]
  4. J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5-W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29(1), 92–94 (2004).
    [Crossref] [PubMed]
  5. J. P. Negel, A. Loescher, A. Voss, B. Dominik, D. Sutter, A. Killi, M. Abdou Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
    [Crossref] [PubMed]
  6. V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
    [Crossref]
  7. S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
    [Crossref]
  8. S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
    [Crossref]
  9. S. Piehler, T. Dietrich, M. Rumpel, Th. Graf, and M. Abdou Ahmed, “Highly efficient 400 W near-fundamental-mode green thin-disk laser,” Opt. Lett. 41(1), 171–174 (2016).
    [Crossref]
  10. R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
    [Crossref]
  11. M. Rumpel, A. Voss, M. Moeller, F. Habel, C. Moormann, M. Schacht, Th. Graf, and M. Abdou Ahmed, “Linearly polarized, narrow-linewidth, and tunable Yb: YAG thin-disk laser,” Opt. Lett. 37(20), 4188–4190 (2012).
    [Crossref] [PubMed]
  12. M.G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  13. K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb: LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
    [Crossref] [PubMed]
  14. B. Weichelt, A. Voss, M. A. Ahmed, and Th. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37(15), 3045–3047 (2012).
    [Crossref] [PubMed]
  15. M. V. Inochkin and W. Bezzubik, “How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation,” J. Opt. Technol. 81(10), 565–570 (2014).
    [Crossref]
  16. N. R. Belashenkov and M. V. Inochkin, “Optimization of nonlinear crystal location for intracavity second-harmonic generation,” J. Opt. Technol. 83(4), 213–218 (2016).
    [Crossref]
  17. W. Koechner, Solid-state Laser Engineering (Springer, 2013).
  18. K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
    [Crossref]

2016 (3)

2015 (1)

2014 (3)

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

M. V. Inochkin and W. Bezzubik, “How phase dispersion of optical coatings affects intracavity second-harmonic generation of laser radiation,” J. Opt. Technol. 81(10), 565–570 (2014).
[Crossref]

2012 (2)

2011 (1)

S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
[Crossref]

2010 (2)

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

K. Beil, S. T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kraenkel, K. Petermann, and G. Huber, “Thermal and laser properties of Yb: LuAG for kW thin disk lasers,” Opt. Express 18(20), 20712–20722 (2010).
[Crossref] [PubMed]

2004 (1)

1999 (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

1981 (1)

1970 (1)

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

Abdou Ahmed, M.

Ahmed, M. A.

Amaro, F. D.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Angrick, V.

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

Antognini, A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Asakawa, Y.

Avdokhin, A.

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

Beil, K.

Belashenkov, N. R.

Bezzubik, W.

Biraben, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Bouzid, M.

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

Cardoso, J. M. R.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Contag, K.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Covita, D. S.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Dax, A.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Dhawan, S.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Dietrich, T.

Dominik, B.

Engler, S.

S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
[Crossref]

Fernandes, L. M. P.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Fredrich-Thornton, S. T.

Gapontsev, V.

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

Gaylord, T. K.

Giesen, A.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Graf, T.

Graf, Th.

Habel, F.

Huber, G.

Huber, R.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Hugel, H.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Inochkin, M. V.

Kadwani, P

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

Kaiser, E.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Karszewski, M.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Killi, A.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

J. P. Negel, A. Loescher, A. Voss, B. Dominik, D. Sutter, A. Killi, M. Abdou Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23(16), 21064–21077 (2015).
[Crossref] [PubMed]

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

Klausmann, K.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Koechner, W.

W. Koechner, Solid-state Laser Engineering (Springer, 2013).

Kraenkel, C.

Loescher, A.

Moeller, M.

Moharam, M.G.

Moormann, C.

Negel, J. P.

Nez, F.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Obara, M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Petermann, K.

Peters, R.

Piehler, S.

Platonov, N.

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

Pohl, R.

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Poprawe, R.

S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
[Crossref]

Pricking, S.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Ramsayer, R.

S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
[Crossref]

Rumpel, M.

Sakuma, J.

Samartsev, I.

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

Schacht, M.

Schuele, W.

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

Smith, R.

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

Stewen, C.

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Stolzenburg, C.

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Stolzenburg, S.

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

Sutter, D.

Tellkamp, F.

Voss, A.

Weichelt, B.

Yagodkin, R.

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6(4), 215–223 (1970).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Technol. (2)

Nature (1)

R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben, J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, and L. M. P. Fernandes, “The size of the proton,” Nature 466(7303), 213–216 (2010).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Procedia (1)

S. Engler, R. Ramsayer, and R. Poprawe, “Process studies on laser welding of copper with brilliant green and infrared lasers,” Phys. Procedia 12, 339–346 (2011).
[Crossref]

Proc. SPIE (3)

V. Gapontsev, A. Avdokhin, P Kadwani, I. Samartsev, N. Platonov, and R. Yagodkin, “SM green fiber laser operating in CW and QCW regimes and producing over 550W of average output power,” Proc. SPIE 8964, 896407 (2014).
[Crossref]

S. Stolzenburg, W. Schuele, V. Angrick, M. Bouzid, and A. Killi, “Multi-kW IR and green nanosecond thin-disk lasers,” Proc. SPIE 8959, 89590O (2014).
[Crossref]

S. Pricking, R. Huber, K. Klausmann, E. Kaiser, C. Stolzenburg, and A. Killi, “High-power cw and long-pulse lasers in the green wavelength regime for copper welding,” Proc. SPIE 9741, 97410G (2016).
[Crossref]

Quantum Electron. (1)

K. Contag, M. Karszewski, C. Stewen, A. Giesen, and H. Hugel, “Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb:YAG laser,” Quantum Electron. 29(8), 697–703 (1999).
[Crossref]

Other (2)

W. Koechner, Solid-state Laser Engineering (Springer, 2013).

E. D. Palik, Handbook of Optical Constants of Solids (Academic press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelength dependence of the reflectivity of the GWM for TE polarization (a.) and TM polarization (b.) in Littrow condition.

Fig. 2
Fig. 2

Experimental setup (a) and beam radius over resonator length for a beam quality number of M2 = 10 (b).

Fig. 3
Fig. 3

Performance of the laser cavity without SHG either with a standard HR end mirror (filled symbols) or the grating end mirror (empty symbols) (a). Measured spectrum of both end mirror configurations at a pump power of 1.95 kW (b).

Fig. 4
Fig. 4

Oscillating power propagating in one direction of the cavity over pump power for the HR end mirror and the grating end mirror configuration. The transmission of the output coupler was 4.3%.

Fig. 5
Fig. 5

Overall performance of the frequency-doubled laser. An image of the emitted beam at 1kW of green output is shown as inset.

Fig. 6
Fig. 6

Stability of the green emission at a pump power of 1.57 kW.

Fig. 7
Fig. 7

Pω over pump power (a), output power and optical efficiency over measured Pω (b), loss port of the grating and evaluated grating efficiency (c) and intra-cavity SHG conversion efficiency (d) over pump power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P ω = P O u t T O C ,
P 2 ω = P ω 2 l 2 w 4 K 2 s i n c 2 ( Δ k l / 2 )
K 2 = 8 d e f f 2 c λ 0 2 n 0 3 ϵ 0 .
η S H G = P 2 ω P ω .

Metrics