Abstract

We proposed and experimentally demonstrated a few mode fiber (FMF) based Raman distributed temperature sensor (RDTS) to extend the sensing distance with enhanced signal-to-noise ratio (SNR) of backscattered anti-Stokes spontaneous Raman scattering. Operating in the quasi-single mode (QSM) with efficient fundamental mode excitement, the FMF allows much larger input pump power before the onset of stimulated Raman scattering compared with the standard single mode fiber (SSMF) and mitigates the detrimental differential mode group delay (DMGD) existing in the conventional multimode fiber (MMF) based RDTS system. Comprehensive theoretical analysis has been conducted to reveal the benefits of RDTS brought by QSM operated FMFs with the consideration of geometric/optical parameters of different FMFs. The measurement uncertainty of FMF based scheme has also been evaluated. Among fibers being investigated and compared (SSMF, 2-mode and 4-mode FMFs, respectively), although an ideal 4-mode FMF based RDTS has the largest SNR enhancement in principle, real fabrication imperfections and larger splicing loss degrade its performance. While the 2-mode FMF based system outperforms in longer distance measurement, which agrees well with the theoretical calculations considering real experimental parameters. Using the conventional RDTS hardware, a 30-ns single pulse at 1550nm has been injected as the pump; the obtained temperature resolutions at 20km distance are estimated to be about 10°C, 7°C and 6°C for the SSMF, 4-mode and 2-mode FMFs, respectively. About 4°C improvement over SSMF on temperature resolution at the fiber end with 3m spatial resolution within 80s measuring time over 20km 2-mode FMFs have been achieved.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Link optimized few-mode fiber Raman distributed temperature sensors

Chen Yang, Meng Wang, Ming Tang, Hao Wu, Can Zhao, Tongqing Liu, Songnian Fu, and Weijun Tong
Appl. Opt. 57(24) 6923-6926 (2018)

Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber

Yinping Liu, Lin Ma, Chen Yang, Weijun Tong, and Zuyuan He
Opt. Express 26(16) 20562-20571 (2018)

References

  • View by:
  • |
  • |
  • |

  1. “Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–158 (2008).
  2. B. Culshaw, “Optical fiber sensor technologies: opportunities and-perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  3. A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.
    [Crossref]
  4. M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
    [Crossref] [PubMed]
  5. G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
    [Crossref]
  6. L. Thévenaz, “Review and progress on distributed fiber sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC1.
  7. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  8. A. Li, Y. Wang, Q. Hu, D. Che, X. Chen, and W. Shieh, “Measurement of distributed mode coupling in a few-mode fiber using a reconfigurable Brillouin OTDR,” Opt. Lett. 39(22), 6418–6421 (2014).
    [Crossref] [PubMed]
  9. D. A. Long, Raman Spectroscopy, (McGraw-Hill, 1977).
  10. X. Sun, J. Li, and M. J. Hines, “Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around,” Proc. SPIE 9852, 98520R (2016).
    [Crossref]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
    [Crossref]
  13. M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
    [Crossref]
  14. D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
    [Crossref]
  15. Z. Zhao, Y. Dang, M. Tang, L. Duan, M. Wang, H. Wu, S. Fu, W. Tong, P. P. Shum, and D. Liu, “Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber,” Opt. Express 24(22), 25111–25118 (2016).
    [Crossref] [PubMed]

2016 (2)

2015 (1)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

2014 (1)

2012 (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (1)

2007 (2)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

2004 (1)

1995 (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

Arya, R.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Baronti, F.

Bolognini, G.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Che, D.

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Chen, X.

Culshaw, B.

Dang, Y.

Di Pasquale, F.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Donoho, D. L.

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

Duan, L.

Fu, S.

Gong, Y.

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

Hao, J.

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

Hines, M. J.

X. Sun, J. Li, and M. J. Hines, “Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around,” Proc. SPIE 9852, 98520R (2016).
[Crossref]

Hu, Q.

Kher, S.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Lazzeri, A.

Li, A.

Li, J.

X. Sun, J. Li, and M. J. Hines, “Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around,” Proc. SPIE 9852, 98520R (2016).
[Crossref]

Liu, D.

Michael, O. L. C.

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

Nannipieri, T.

Oak, S. M.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Pachori, R. B.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Park, J.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Park, N.

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Paulose, V.

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

Raju, S. D. V. S. J.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Ravindranath, S. V. G.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Roncella, R.

Saxena, M. K.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Shieh, W.

Shum, P. P.

Signorini, A.

Soto, M. A.

M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, G. Bolognini, and F. Di Pasquale, “Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding,” Opt. Lett. 36(13), 2557–2559 (2011).
[Crossref] [PubMed]

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Sun, X.

X. Sun, J. Li, and M. J. Hines, “Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around,” Proc. SPIE 9852, 98520R (2016).
[Crossref]

Tang, M.

Tong, W.

Wang, M.

Wang, Y.

Wu, H.

Zhao, Z.

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory 41(3), 613–627 (1995).
[Crossref]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

G. Bolognini, J. Park, M. A. Soto, N. Park, and F. Di Pasquale, “Analysis of distributed temperature sensing based on Raman scattering using OTDR coding and discrete Raman amplification,” Meas. Sci. Technol. 18(10), 3211–3218 (2007).
[Crossref]

Opt. Commun. (1)

Y. Gong, O. L. C. Michael, J. Hao, and V. Paulose, “Extension of sensing distance in a ROTDR with an optimized fiber,” Opt. Commun. 280(1), 91–94 (2007).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65(1), 14–24 (2015).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

X. Sun, J. Li, and M. J. Hines, “Distributed temperature measurement using a dual-core fiber with an integrated miniature turn-around,” Proc. SPIE 9852, 98520R (2016).
[Crossref]

Sensors (Basel) (1)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Other (5)

D. A. Long, Raman Spectroscopy, (McGraw-Hill, 1977).

L. Thévenaz, “Review and progress on distributed fiber sensing,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThC1.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

A. Signorini, S. Faralli, M. A. Soto, G. Sacchi, F. Baronti, R. Barsacchi, A. Lazzeri, R. Roncella, G. Bolognini, and F. Di Pasquale, “40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWL2.
[Crossref]

“Technology Focus: Optical-fiber sensors,” Nat. Photonics2(3), 143–158 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Refractive index profile of the 2-mode FMF. (b) Refractive index profile of the 4-mode FMF.
Fig. 2
Fig. 2 Calculated H (P0, z) for different fibers as a function of P0 and z.
Fig. 3
Fig. 3 (a) H - P0 curves when z = 0; Pth1: SRS threshold of SSMF; Pth2: SRS threshold of 2-mode FMF; Pth3: SRS threshold of 4-mode FMF; Hmax1: maximum H value of SSMF; Hmax2: maximum H value of 2-mode FMF; Hmax3: maximum H value of 4-mode FMF. (b) H - P0 curves when z = 20km. (c) Ideal H - z curves when P0 = Pth. (d) H - z curves for three different fibers when P0 = Pth and splicing loss is considered.
Fig. 4
Fig. 4 Experimental setup of the RDTS system; WDM: wavelength division multiplex; APD: avalanche photo diode; DAQ: data acquisition; Inset.1: Transmittance spectra at WDM output; Inset.2: microscope image of taper spliced area.
Fig. 5
Fig. 5 (a) The measured far-field intensity distribution of 2-mode FMF. (b) The measured far-field intensity distribution of 4-mode FMF. (c) Electric field intensity profile of LP01 and LP11 in 2-mode FMF from simulation. (d) Electric field intensity profile of LP01, LP11, LP02 and LP21 in 4-mode FMF from simulation.
Fig. 6
Fig. 6 (a) Acquired backscattered stokes signal of different sensing fibers. (b) Acquired backscattered anti-stokes signal of different sensing fibers.
Fig. 7
Fig. 7 (a) Averaged AS traces without WT denoising. (b) SNR traces of the averaged AS traces without WT denoising. (c) WT de-noised AS traces. (d) SNR traces of the WT de-noised AS traces.
Fig. 8
Fig. 8 (a) Temperature-distance trace of SSMF. (b)Temperature-distance trace of the 2-mode FMF. (c) Temperature-distance trace of the 4-mode FMF. (d) RMS temperature resolutions for different fiber types.
Fig. 9
Fig. 9 (a) Spatial resolutions near 15.5 km of SSMF. (b) Spatial resolutions near 15.5 km of the 2-mode FMF. (c) Spatial resolutions near 15.5 km of the 4-mode FMF.

Tables (1)

Tables Icon

Table 1 Measured parameters of the fibers under test

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R T P A S P S ( v a s v s ) 4 exp ( h Δ v k B T )
P A S ( z ) = D F A S ( z ) g R P 0 × G ( z ) × exp { 0 z [ α R ( ς ) + α A S ( ς ) ] d ς }
G ( z ) = exp ( g R P 0 ( z ) c Δ t / 2 n A e f f )
H ( P 0 , z ) g R P 0 × G ( z ) × exp { 0 z [ α R ( ς ) + α A S ( ς ) ] d ς } = g R P 0 × exp ( g R P 0 ( z ) c Δ t / 2 n A e f f ) × exp { 0 z [ α R ( ς ) + α A S ( ς ) ] d ς }
P t h 20 A e f f g R L e f f

Metrics