Abstract

A phase demodulation method specially developed for direct detection φ-OTDR is proposed and demonstrated. It is the only method to date that can be used for phase demodulation based on pure direct detection system. As a result, this method greatly simplifies the system configuration and lowers the cost. It works by firstly deriving a pair of orthogonal signals from the single-channel intensity and then realizing phase demodulation by means of IQ demodulation. Different forms of PZT induced vibration are applied to the fiber and the phase is correctly demodulated in each case. The experiment results show that this method can effectively perform phase demodulation with extremely simple system configuration.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent Φ-OTDR based on I/Q demodulation and homodyne detection

Zinan Wang, Li Zhang, Song Wang, Naitian Xue, Fei Peng, Mengqiu Fan, Wei Sun, Xianyang Qian, Jiarui Rao, and Yunjiang Rao
Opt. Express 24(2) 853-858 (2016)

Fast coarse-fine locating method for φ-OTDR

Xuanwei Mei, Fufei Pang, Huanhuan Liu, Guoqin Yu, Yuying Shao, Tianyu Qian, Chengbo Mou, Longbao Lv, and Tingyun Wang
Opt. Express 26(3) 2659-2667 (2018)

Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection

Yonas Muanenda, Stefano Faralli, Claudio J. Oton, and Fabrizio Di Pasquale
Opt. Express 26(2) 687-701 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5194847 (1993).
  2. X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
    [Crossref] [PubMed]
  3. Y. Lu, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  4. Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
    [Crossref] [PubMed]
  5. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).
  6. H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, “Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Ф-OTDR),” J. Lightwave Technol. 33(15), 3156–3162 (2015).
    [Crossref]
  7. F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
    [Crossref]
  8. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt. 46(11), 1968–1971 (2007).
    [Crossref] [PubMed]
  9. A. Owen, G. Duckworth, and J. Worsley, “Fibre optical distributed acoustic sensing for border monitoring,” in 2012 European Intelligence and Security Informatics Conference (2012), pp. 362–364.
    [Crossref]
  10. F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
    [Crossref] [PubMed]
  11. G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
    [Crossref]
  12. Y. Dong, X. Chen, E. Liu, C. Fu, H. Zhang, and Z. Lu, “Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer,” Appl. Opt. 55(28), 7810–7815 (2016).
    [Crossref] [PubMed]
  13. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
    [Crossref]
  14. Z. Wang, L. Zhang, S. Wang, N. Xue, F. Peng, M. Fan, W. Sun, X. Qian, J. Rao, and Y. Rao, “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express 24(2), 853–858 (2016).
    [Crossref] [PubMed]
  15. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
    [Crossref]
  16. Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
    [Crossref]
  17. G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
    [Crossref]
  18. M. G. Taylor, “Phase estimation methods for optical coherent detection using digital signal processing,” J. Lightwave Technol. 27(7), 901–914 (2009).
    [Crossref]
  19. A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
    [Crossref]
  20. C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
    [Crossref]
  21. J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. Patent GB 2 222 247A (1990).
  22. A. B. Lewis and S. Russell, “Method and apparatus for acoustic sensing using multiple optical pulses,” U. S. Patent 0144016 A1 (2008)
  23. J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
    [Crossref]
  24. Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
    [Crossref]
  25. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
    [Crossref]

2016 (3)

2015 (6)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

G. S. Fang, T. W. Xu, S. W. Feng, and F. Li, “Phase-sensitive optical time domain reflectometer based on phase generated carrier algorithm,” J. Lightwave Technol. 33(13), 2811–2816 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
[Crossref] [PubMed]

H. Wu, S. Xiao, X. Li, Z. Wang, J. Xu, and Y. Rao, “Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry (Ф-OTDR),” J. Lightwave Technol. 33(15), 3156–3162 (2015).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

2014 (3)

F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
[Crossref] [PubMed]

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

2013 (2)

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

2012 (2)

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

2010 (2)

2009 (1)

2007 (1)

Alekseev, A. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Bao, X.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Belaland, M.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Cai, H.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Cai, H. W.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Chen, L.

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol. 28(22), 3243–3249 (2010).

Chen, X.

Dong, Y.

Duan, N.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
[Crossref]

Duckworth, G.

A. Owen, G. Duckworth, and J. Worsley, “Fibre optical distributed acoustic sensing for border monitoring,” in 2012 European Intelligence and Security Informatics Conference (2012), pp. 362–364.
[Crossref]

Fan, M.

Fang, G. S.

Fang, Z.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Fang, Z. J.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Feng, H.

Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
[Crossref] [PubMed]

Feng, S. W.

Fu, C.

Gorshkov, B. G.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Jia, X. H.

Juarez, J. C.

Li, F.

Li, J.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
[Crossref]

Li, X.

Liang, K.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Liang, K. Z.

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Liu, E.

Liu, X.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Lu, Y.

Lu, Z.

Masoudi, A.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Nakarmi, B.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Newson, T. P.

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Owen, A.

A. Owen, G. Duckworth, and J. Worsley, “Fibre optical distributed acoustic sensing for border monitoring,” in 2012 European Intelligence and Security Informatics Conference (2012), pp. 362–364.
[Crossref]

Pan, Z.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Pan, Z. Q.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Peng, F.

Peng, G.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Peng, Z. P.

Potapov, V. T.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Qian, X.

Qu, R.

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Qu, R. H.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Rao, J.

Rao, Y.

Rao, Y. J.

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
[Crossref]

F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang, and Z. P. Peng, “Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines,” Opt. Express 22(11), 13804–13810 (2014).
[Crossref] [PubMed]

Shang, Y.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Shi, Y.

Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
[Crossref] [PubMed]

Simikin, D. E.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Sun, W.

Taylor, H. F.

Taylor, M. G.

Tu, G.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Vdovenko, V. S.

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

Wang, C.

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Wang, S.

Wang, Z.

Wang, Z. N.

Worsley, J.

A. Owen, G. Duckworth, and J. Worsley, “Fibre optical distributed acoustic sensing for border monitoring,” in 2012 European Intelligence and Security Informatics Conference (2012), pp. 362–364.
[Crossref]

Wu, H.

Xia, L.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Xiao, S.

Xu, J.

Xu, T. W.

Xue, N.

Ye, Q.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Zeng, Z.

Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
[Crossref] [PubMed]

Zhang, H.

Zhang, L.

Zhang, X.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhang, Y.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhou, J.

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Zhu, F.

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

Zhu, T.

Appl. Opt. (2)

Chin. J. Lasers (1)

J. Zhou, Z. Q. Pan, Q. Ye, H. W. Cai, R. H. Qu, and Z. J. Fang, “Phase demodulation technology using a multifrequency source discrimination of interference-fading induced false alarm in a Φ-OTDR system,” Chin. J. Lasers 40(9), 0905003 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Peng, N. Duan, Y. J. Rao, and J. Li, “Real-time position and speed monitoring of trains using phase-sensitive OTDR,” IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014).
[Crossref]

G. Tu, X. Zhang, Y. Zhang, F. Zhu, L. Xia, and B. Nakarmi, “The development of an φ-OTDR system for quantitative vibration measurement,” IEEE Photonics Technol. Lett. 27(12), 1349–1352 (2015).
[Crossref]

J. Lightwave Technol. (5)

Laser Phys. (3)

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “Fading reduction in a phase optical time-domain reflectometer with multimode sensitive fiber,” Laser Phys. 26(9), 095101 (2016).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse phase modulated probe signal,” Laser Phys. 24(11), 115106 (2014).
[Crossref]

A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, V. T. Potapov, and D. E. Simikin, “A phase-sensitive optical time-domain reflectometer with dual-pulse diverse frequency probe signal,” Laser Phys. 25(6), 065101 (2015).
[Crossref]

Meas. Sci. Technol. (1)

A. Masoudi, M. Belaland, and T. P. Newson, “A distributed optical fibre dynamic strain sensor based on phaseOTDR,” Meas. Sci. Technol. 24(8), 085204 (2013).
[Crossref]

Opt. Commun. (1)

C. Wang, C. Wang, Y. Shang, X. Liu, and G. Peng, “Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry,” Opt. Commun. 346, 172–177 (2015).
[Crossref]

Opt. Express (2)

Proc. SPIE (2)

Z. Pan, K. Liang, Q. Ye, H. Cai, R. Qu, and Z. Fang, “Phase-sensitive OTDR system based on digital coherent detection,” Proc. SPIE 8311, 83110S (2011).
[Crossref]

Z. Q. Pan, K. Z. Liang, J. Zhou, Q. Ye, H. W. Cai, and R. H. Qu, “Interference-fading-free phase-demodulated OTDR system,” Proc. SPIE 8421, 842129 (2012).
[Crossref]

Sensors (Basel) (2)

X. Bao and L. Chen, “Recent progress in distributed fiber optic sensors,” Sensors (Basel) 12(7), 8601–8639 (2012).
[Crossref] [PubMed]

Y. Shi, H. Feng, and Z. Zeng, “A long distance phase-sensitive optical time domain reflectometer with simple structure and high locating accuracy,” Sensors (Basel) 15(9), 21957–21970 (2015).
[Crossref] [PubMed]

Other (4)

A. Owen, G. Duckworth, and J. Worsley, “Fibre optical distributed acoustic sensing for border monitoring,” in 2012 European Intelligence and Security Informatics Conference (2012), pp. 362–364.
[Crossref]

J. P. Dakin and C. Lamb, “Distributed fibre optic sensor system,” U.S. Patent GB 2 222 247A (1990).

A. B. Lewis and S. Russell, “Method and apparatus for acoustic sensing using multiple optical pulses,” U. S. Patent 0144016 A1 (2008)

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” U.S. Patent 5194847 (1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Contributions from three regions (left) and contributions from two pulses (right)
Fig. 2
Fig. 2 Double trace interference in dual-pulse probe scheme
Fig. 3
Fig. 3 Experimental setup
Fig. 4
Fig. 4 Demodulated waveform of the 170Hz vibration (left) and comparison between the waveforms of the raw intensity and the demodulated result (right)
Fig. 5
Fig. 5 200 overlapped directly detected φ-OTDR intensity traces (left) and spatial-frequency energy distribution of the φ-OTDR intensity signal (right)
Fig. 6
Fig. 6 Intensity evolution at 178m (left) and intensity evolution at 182m (right)
Fig. 7
Fig. 7 Preprocessed intensity evolution at 178m (left) and preprocessed intensity evolution at 182m (right)
Fig. 8
Fig. 8 Sum of the two processed intensity signals (left) and difference of the two processed intensity signals (right)
Fig. 9
Fig. 9 Demodulated result of the AM vibration (left) and waveform parameter of the demodulated waveform (right)
Fig. 10
Fig. 10 Intensity evolution at 178m (left) and intensity evolution at 182m (right)
Fig. 11
Fig. 11 Demodulated result of the AM vibration (left) and waveform parameter of the demodulated waveform (right)
Fig. 12
Fig. 12 Intensity evolution at 178m (left) and intensity evolution at 182m (right)
Fig. 13
Fig. 13 Demodulated result of the chirp vibration
Fig. 14
Fig. 14 Waveform parameter of the demodulated waveform (left) and time-frequency characteristic of the demodulated waveform (right)
Fig. 15
Fig. 15 Evolution of demodulated phase amplitude with respect to the applied PZT vibration amplitude
Fig. 16
Fig. 16 Intensity signal in the case of coherent fading (left) and demodulation result in the case of coherent fading (right).
Fig. 17
Fig. 17 Small amplitude causes the demodulation failure.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I i = < E i E i > , i=1,2
E i = E 0 m = M i M i + N i e m exp ( 2 α z m ) exp ( j ( φ m k z m + ω t ) ) , i=1,2
E i = E 0 m = M i M i + N 1 i e m exp ( j ( φ m k z m + ω t ) ) + E 0 m = M i + N 1 i + 1 M i + N 1 i + N 2 i e m exp ( j ( φ m k z m + ω t ) ) + E 0 m = M i + N 1 i + N 2 i + 1 M i + N 1 i + N 2 i + N 3 i e m exp ( j ( φ m k z m + ω t ) ) , i=1,2
E i = E 0 m = M i M i + N 1 i e m exp ( j ( φ m k z m + ω t ) ) + E 0 m = M i + N 1 i + N 2 i + 1 M i + N 1 i + N 2 i + N 3 i e m exp ( j ( φ m k z m + ω t + θ ( t ) ) ) , i=1,2
E i = A 1 i ( t ) exp ( j ω t + j ψ 1 i ( t ) ) + A 2 i ( t ) exp ( j ω t + j θ ( t ) + j ψ 2 i ( t ) ) , i=1,2
A 1 i ( t ) = E 0 ( ( m = M i M i + N 1 i e m cos ( φ m k ( t ) z m ( t ) ) ) 2 + ( m = M i M i + N 1 i e m sin ( φ m k ( t ) z m ( t ) ) ) 2 ) 1 2 A 2 i ( t ) = E 0 ( ( m = M i + N 1 i + N 2 i + 1 M i + N 1 i + N 2 i + N 3 i e m cos ( φ m k ( t ) z m ( t ) ) ) 2 + ( m = M i + N 1 i + N 2 i + 1 M i + N 1 i + N 2 i + N 3 i e m sin ( φ m k ( t ) z m ( t ) ) ) 2 ) 1 2 , i = 1 , 2
ψ 1 i ( t ) = t g 1 ( m = M i M i + N 1 i e m sin ( φ m k ( t ) z m ( t ) ) m = M i M i + N 1 i e m cos ( φ m k ( t ) z m ( t ) ) ) , ψ 2 i ( t ) = t g 1 ( m = M i + N 1 i + N 2 i + 1 m = M i + N 1 i + N 2 i + N 3 i e m sin ( φ m k ( t ) z m ( t ) ) m = M i + N 1 i + N 2 i + 1 m = M i + N 1 i + N 2 i + N 3 i e m cos ( φ m k ( t ) z m ( t ) ) ) , i = 1 , 2
I i ( t ) = A 1 i ( t ) 2 + A 2 i ( t ) 2 + 2 A 1 i ( t ) A 2 i ( t ) cos ( θ ( t ) + ψ 2 i ( t ) ψ 1 i ( t ) ) , i=1,2
I i ( t ) = D i + A i cos ( θ ( t ) + ψ i ) , i=1,2
I i ( t ) = 1 cos ( θ ( t ) + ψ i ) , i=1,2
S u m ( t ) = 2 cos ( ψ 2 ψ 1 2 ) cos ( θ ( t ) + ψ 1 + ψ 2 2 ) D i f f ( t ) = 2 sin ( ψ 2 ψ 1 2 ) sin ( θ ( t ) + ψ 1 + ψ 2 2 )
S u m ' ( t ) = 1 cos ( θ ( t ) + ψ 1 + ψ 2 2 ) D i f f ' ( t ) = 1 sin ( θ ( t ) + ψ 1 + ψ 2 2 )
θ ( t ) + ψ 1 + ψ 2 2 = t g 1 ( D i f f ' ( t ) S u m ' ( t ) )

Metrics