Abstract

Formation of polymeric pillars by using laser interference lithography is compared for nanosecond and picosecond laser pulses. The experimental results are explained by dynamics of laser-excited radicals. The shape of fabricated structures demonstrates that thermal accumulation and oxygen diffusion from the surrounding air make an influence on polymerization when the pulse duration is in the nanosecond range. By using picosecond laser pulses, the thermal accumulation and oxygen diffusion effects are not important for low repetition rate (500 Hz), and they become relevant only at the repetition rates higher than ≥ 1 kHz. It is shown that thermal accumulation is caused by a low-temperature diffusivity and heat accumulation at the polymer-glass interface, and it plays a significant role in the final shape of the structures fabricated using the nanosecond laser pulses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses

Mangirdas Malinauskas, Paulius Danilevičius, and Saulius Juodkazis
Opt. Express 19(6) 5602-5610 (2011)

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses

Tommaso Baldacchini, Scott Snider, and Ruben Zadoyan
Opt. Express 20(28) 29890-29899 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
    [Crossref]
  2. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
    [Crossref]
  3. M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
    [Crossref]
  4. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref] [PubMed]
  5. Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
    [Crossref]
  6. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
    [Crossref]
  7. E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
    [Crossref]
  8. S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
    [Crossref] [PubMed]
  9. A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).
  10. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
    [Crossref]
  11. S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
    [Crossref] [PubMed]
  12. M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
    [Crossref] [PubMed]
  13. I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
    [Crossref] [PubMed]
  14. M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
    [Crossref]
  15. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
    [Crossref]
  16. M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
    [Crossref] [PubMed]
  17. G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
    [Crossref]
  18. E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
    [Crossref]
  19. T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
    [Crossref]
  20. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref] [PubMed]
  21. N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” Proc. SPIE 7, 043002 (2008).
  22. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
    [Crossref] [PubMed]
  23. S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
    [Crossref]
  24. V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
    [Crossref]
  25. M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
    [Crossref] [PubMed]
  26. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
    [Crossref]
  27. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  28. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
    [Crossref]
  29. G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
    [Crossref]
  30. F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
    [Crossref] [PubMed]
  31. V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
    [Crossref] [PubMed]
  32. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
    [Crossref]
  33. A. Žukauskas, M. Malinauskas, G. Seniutinas, and S. Juodkazis, in Multiphoton Lithography: Techniques, Materials and Applications, J. Stampfl, Ed. (Wiley-VCH Verlag GmbH Germany, 2017).

2015 (1)

2013 (2)

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

2012 (2)

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

2011 (4)

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
[Crossref] [PubMed]

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
[Crossref] [PubMed]

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

2010 (5)

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

2009 (3)

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

2008 (3)

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” Proc. SPIE 7, 043002 (2008).

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

2007 (2)

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
[Crossref]

2006 (1)

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

2005 (2)

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
[Crossref]

2003 (1)

2002 (2)

I. Wang, M. Bouriau, P. L. Baldeck, C. Martineau, and C. Andraud, “Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser,” Opt. Lett. 27(15), 1348–1350 (2002).
[Crossref] [PubMed]

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

1991 (1)

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

1985 (1)

F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
[Crossref] [PubMed]

Andraud, C.

Bagryansky, V. A.

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

Baldeck, P. L.

Borchers, K.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Boudriot, U.

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Bouriau, M.

Chichkov, B.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Chichkov, B. N.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
[Crossref]

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref] [PubMed]

Cronauer, C.

Danilevicius, P.

Dedoussis, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Dersch, R.

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Domann, G.

Doraiswamy, A.

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

Eaton, W. A.

F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
[Crossref] [PubMed]

Egbert, A.

Engelhardt, S.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Farsari, M.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Feng, Z.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Ferrone, F. A.

F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
[Crossref] [PubMed]

Fischer, J.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Fotakis, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Fröhlich, L.

Gadonas, R.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

Gaidukeviciute, A.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

Galkin, O.

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Garliauskas, M.

Gedvilas, M.

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Gertus, T.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Gilbergs, H.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

Gillner, A.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Gittard, S. D.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Gleeson, M. R.

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
[Crossref] [PubMed]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

Gong, Q.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Gothelf, K. V.

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

Greiner, A.

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Guo, J.

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
[Crossref] [PubMed]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hoch, E.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Hofrichter, J.

F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
[Crossref] [PubMed]

Houbertz, R.

Jiang, H.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Juodkazis, S.

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
[Crossref]

Karalekas, D.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Klinger, M.

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

Kondo, T.

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
[Crossref]

Korolev, V. V.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

Krüger, H.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Lenardi, C.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Lin, L.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Liu, S.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

Liu, Y.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Lusk, J.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

MacCraith, B. D.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

Malinauskas, M.

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

M. Malinauskas, P. Danilevičius, and S. Juodkazis, “Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses,” Opt. Express 19(6), 5602–5610 (2011).
[Crossref] [PubMed]

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

Martineau, C.

Melissinaki, V.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Meyer, W.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Minghetti, P.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Misawa, H.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
[Crossref]

Mizeikis, V.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

Monteiro-Riviere, N. A.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Morel, P.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Narayan, R.

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

Narayan, R. J.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

Ogilby, P. R.

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

Ohrt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Ostendorf, A.

Oubaha, M.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Ovsianikov, A.

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
[Crossref]

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

Paipulas, D.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

Pan, W.

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Popall, M.

Purlys, V.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

Raciukaitis, G.

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Reinhardt, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Rode, A. V.

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rutkauskas, M.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Sakellari, I.

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Schizas, C.

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Schulz, J.

Serbin, J.

Sheridan, J. T.

M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optimisation of photopolymers for holographic applications using the Non-local Photo-polymerization Driven Diffusion model,” Opt. Express 19(23), 22423–22436 (2011).
[Crossref] [PubMed]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

Shiakolas, P. S.

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” Proc. SPIE 7, 043002 (2008).

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Smilgevicius, V.

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Stankevicius, E.

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref] [PubMed]

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

Steinhart, M.

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sun, Q.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Syutkin, V. M.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

Tan, Z.

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

Thiel, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Tolbod, L. P.

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

Tolkatchev, V. A.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

Tovar, G. E.

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Ueno, K.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

Uppal, N.

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” Proc. SPIE 7, 043002 (2008).

Uzunova, V. V.

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

Vamvakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

Vasenkov, S. V.

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

Vekilov, P. G.

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Voisiat, B.

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

von Freymann, G.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Vyazovkin, V. L.

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

Wang, C.

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

Wang, I.

Wang, Z.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Wegener, M.

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Wendorff, J. H.

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Wu, G.

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

Wu, Z.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Yang, H.

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Yokota, Y.

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

Zhang, H.

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

Zhang, W.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Zhao, G.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

Zheng, Z.

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Žukauskas, A.

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Klinger, L. P. Tolbod, K. V. Gothelf, and P. R. Ogilby, “Effect of polymer cross-links on oxygen diffusion in glassy PMMA films,” ACS Appl. Mater. Interfaces 1(3), 661–667 (2009).
[Crossref] [PubMed]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, “Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm,” Appl. Phys. Lett. 97(22), 221102 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

T. Kondo, S. Juodkazis, and H. Misawa, “Reduction of capillary force for high-aspect ratio nanofabrication,” Appl. Phys., A Mater. Sci. Process. 81(8), 1583–1586 (2005).
[Crossref]

Appl. Surf. Sci. (1)

A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007).
[Crossref]

Biofabrication (1)

S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Krüger, G. E. Tovar, and A. Gillner, “Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization,” Biofabrication 3(2), 025003 (2011).
[Crossref] [PubMed]

Biophys. J. (1)

V. V. Uzunova, W. Pan, O. Galkin, and P. G. Vekilov, “Free heme and the polymerization of sickle cell hemoglobin,” Biophys. J. 99(6), 1976–1985 (2010).
[Crossref] [PubMed]

Front. Phys. China (1)

Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Diagnose Parameters of Plasma Induced by Femtosecond Laser Pulse in Quartz and Glasses,” Front. Phys. China 1(1), 67–71 (2006).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010).
[Crossref]

Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. (1)

S. V. Vasenkov, V. A. Bagryansky, V. V. Korolev, and V. A. Tolkatchev, “Correlations between radical distributions and structural defects of squalane and poly(methyl methacrylate) glasses in the oxidation kinetics of radicals,” Int. J. Radiat. Appl. Instrum. Part Radiat. Phys. Chem. 38(2), 191–197 (1991).
[Crossref]

J. Diabetes Sci. Technol. (1)

S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Technol. 3(2), 304–311 (2009).
[Crossref] [PubMed]

J. Micromech. Microeng. (1)

E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, “Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique,” J. Micromech. Microeng. 22(6), 065022 (2012).
[Crossref]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion Model of Hologram Formation in Dry Photopolymer Materials,” J. Mod. Opt. 41(10), 1929–1939 (1994).
[Crossref]

J. Mol. Biol. (1)

F. A. Ferrone, J. Hofrichter, and W. A. Eaton, “Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques,” J. Mol. Biol. 183(4), 591–610 (1985).
[Crossref] [PubMed]

J. Opt. (1)

M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, “A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses,” J. Opt. 12(3), 035204 (2010).
[Crossref]

J. Phys. Chem. C (1)

K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-Enhanced Photopolymerization,” J. Phys. Chem. C 113(27), 11720–11724 (2009).
[Crossref]

Laser Chem. (1)

A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,” Laser Chem. 2008, 1–7 (2008).
[Crossref]

Lith. J. Phys. (1)

E. Stankevičius, M. Gedvilas, B. Voisiat, M. Malinauskas, and G. Raciukaitis, “Fabrication of periodic micro-structures by holographic lithography,” Lith. J. Phys. 53(4), 227–237 (2013).
[Crossref]

Macromolecules (1)

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High Intensity Response of Photopolymer Materials for Holographic Grating Formation,” Macromolecules 43(22), 9462–9472 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

Z. Wang, G. Zhao, W. Zhang, Z. Feng, L. Lin, and Z. Zheng, “Low-cost micro-lens arrays fabricated by photosensitive sol–gel and multi-beam laser interference,” Photonics Nanostruct. Fundam. Appl. 10(4), 667–673 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Polym. Adv. Technol. (1)

R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendorff, “Nanoprocessing of polymers: applications in medicine, sensors, catalysis, photonics,” Polym. Adv. Technol. 16(2-3), 276–282 (2005).
[Crossref]

Proc. SPIE (2)

A. Ovsianikov, A. Doraiswamy, R. Narayan, and B. N. Chichkov, “Two-photon polymerization for fabrication of biomedical devices,” Proc. SPIE 6465, 64650O (2007).

N. Uppal and P. S. Shiakolas, “Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics,” Proc. SPIE 7, 043002 (2008).

Procedia Eng. (1)

G. Wu, C. Wang, Z. Tan, and H. Zhang, “Effect of Temperature on Emulsion Polymerization of n-Butyl Acrylate,” Procedia Eng. 18, 353–357 (2011).
[Crossref]

Prog. Quantum Electron. (1)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37(5), 215–323 (2013).
[Crossref]

React. Kinet. Catal. Lett. (1)

V. L. Vyazovkin, V. V. Korolev, V. M. Syutkin, and V. A. Tolkatchev, “On oxygen diffusion in poly(methyl methacrylate) films,” React. Kinet. Catal. Lett. 77(2), 293–299 (2002).
[Crossref]

Other (1)

A. Žukauskas, M. Malinauskas, G. Seniutinas, and S. Juodkazis, in Multiphoton Lithography: Techniques, Materials and Applications, J. Stampfl, Ed. (Wiley-VCH Verlag GmbH Germany, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the experimental setup utilizing the laser interference lithography. Inset on the top right presents the comparison of the used laser pulses when the peak intensity of a picosecond laser pulse was 3.5 times larger compared to the peak intensity of a nanosecond laser pulse. Inset on the bottom right demonstrates an intensity distribution pattern of the four-beam interference.
Fig. 2
Fig. 2 Morphology of the structures fabricated using 300 ps and 35 ns laser pulses with different exposure times. The peak intensities of the used picosecond and nanosecond pulses were 11.3 MW/cm2 and 3.2 MW/cm2, respectively. Scale bars represent 5 μm.
Fig. 3
Fig. 3 Diameter (a) and height (b) of the pillars vs. exposure time for 35 ns (black) and 300 ps (red) laser pulses with the 3.2 MW/cm2 and 11.3 MW/cm2 peak pulse intensities, respectively. The diameter was measured at the middle of the pillar height.
Fig. 4
Fig. 4 a) Theoretical estimation of the radical density generated by a single laser pulse with the duration of 35 ns and with the 3.2 MW/cm2 peak intensity (black line) and for the 300 ps pulse with the 11.3 MW/cm2 peak intensity (red line); b) the radical density transient during the 300 ps laser pulse (the temporal profile is shown in the background); c) the radical density dynamics during the dark period for a 500 Hz system and different diffusion constant in the case of the 35 ns (black lines) and 300 ps (red lines) pulse durations with the peak pulse intensities 3.2 MW/cm2 and 11.3 MW/cm2, respectively. The right side depicts an enlarged view of the radical density variation during the dark period in the case of using the 300 ps pulse.
Fig. 5
Fig. 5 a) Illustration of the difference between the radical density generated by the ns- and ps-laser pulses in the four beam interference case. Rth – threshold of radicals density; dps and dns – diameter of pillars fabricated by picosecond and nanosecond laser pulses, respectively; b) The transmission spectra of the used substrate (red line) and of the photopolymer SZ2080 with 1wt% 4,4‘-bis(dimethyl-amino)-benzophenone on the substrate (black line) when the thickness of the photopolymer was ~10 µm (the same as used in the experiments); c) Model of the heat accumulation effect to the shape of the pillars fabricated in nanosecond and picosecond cases. Pillars in nanosecond case were fabricated with 35 ns pulse duration, 3.2 MW/cm2 peak pulse intensity and 5 s exposure time, in picosecond case 300 ps pulse duration, 11.3 MW/cm2 peak pulse intensity and 240 s exposure time.
Fig. 6
Fig. 6 a) Illustration of the experimental results using different pulse repetition rate of the lasers; b) Morphology of the structures fabricated with the 300 ps laser pulses and different repetition rate (1 kHz and 500 Hz) for the different number of the pulses when the laser pulse energy is 30 μJ and pulse peak intensity is ~11.3 MW/cm2. Scale bars represent 5 μm.
Fig. 7
Fig. 7 The variation of geometrical parameters (diameter (a) and height (b)) of pillars fabricated by using 1 kHz (black) and 500 Hz (red) with the 300 ps (red) laser pulses and a different number of pulses. The diameter was measured in the middle of the structure height.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I peak =2P/(π w 0 2 ντ),
R(x) t =D 2 R x 2 + σ 1 PN2 k t R 2 k p MR,
q= dI dz =αI(x)exp(4ln2 t 2 τ 2 ),
q σ 1 N.
I(x)= I 0 co s 4 ( π 2 Λ x ),
R(x) t =D 2 R x 2 +αP I 0 cos 4 ( π 2 Λ x )exp(4ln2 t 2 τ 2 )2 k t R 2 k p MR.
T max = (1R) F P 3 2 k B 2 l s N A n a ,

Metrics