Abstract

Enhanced intrinsic fluorescence (~x103) from novel carboxidized nanosculptured thin films (CO-nSTFs) of silver is reported. The sources of intrinsic fluorescence, confirmed by X-ray photoelectron spectroscopy, are Ag2O grains and residual carbon formed on the outer layer of silver nSTFs when exposed to air, while the localized surface plasmons on silver nSTFs enhance this intrinsic fluorescence. The CO-nSTFs are optimized with respect to porosity for the maximum enhancement. A sensor developed by using the self-assembled monolayer technique on optimized CO-nSTF is used for the label free detection of glycated hemoglobin, performed by simultaneously using fluorescence imaging and spectroscopy. The specificity of the sensor is established from control experiments on hemoglobin. These novel nanorod like intrinsically fluorescent CO-nSTFs pose huge potential in label free biosensing, light sources, imaging and many more applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coupling discrete metal nanoparticles to photonic crystal surface resonant modes and application to Raman spectroscopy

Seok-min Kim, Wei Zhang, and Brian T. Cunningham
Opt. Express 18(5) 4300-4309 (2010)

Fluorescence plasmonic enhancement of FITC labeled PS nanoparticles coupled to silver island films

Huixia Yang, Xiaoqiong Qi, Banghong Zhang, Hui Wang, and Liang Xie
Appl. Opt. 55(20) 5387-5392 (2016)

Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface

Patrick C. Mathias, Nikhil Ganesh, Leo L. Chan, and Brian T. Cunningham
Appl. Opt. 46(12) 2351-2360 (2007)

References

  • View by:
  • |
  • |
  • |

  1. N. S. White and R. J. Errington, “Fluorescence techniques for drug delivery research: theory and practice,” Adv. Drug Deliv. Rev. 57(1), 17–42 (2005).
    [Crossref] [PubMed]
  2. Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
    [Crossref]
  3. A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
    [Crossref]
  4. M. R. Eftink, “Fluorescence Techniques for Studying Protein Structure,” in Methods of Biochemical Analysis (John Wiley & Sons, Inc., 2006), pp. 127–205.
  5. A. M. Rossi and C. W. Taylor, “Analysis of protein-ligand interactions by fluorescence polarization,” Nat. Protoc. 6(3), 365–387 (2011).
    [Crossref] [PubMed]
  6. L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
    [Crossref] [PubMed]
  7. P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
    [Crossref]
  8. Y. Matsunaga and J.-S. Yang, “Multicolor fluorescence writing based on host–guest interactions and force-induced fluorescence-color memory,” Angew. Chem. Int. Ed. Engl. 54(27), 7985–7989 (2015).
    [Crossref] [PubMed]
  9. J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
    [Crossref] [PubMed]
  10. J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
    [Crossref] [PubMed]
  11. F. S. Ligler, “Fluorescence-Based Optical Biosensors,” in Biophotonics, L. Pavesi, and P. M. Fauchet, eds. (Springer Berlin Heidelberg, 2008), pp. 199–215.
  12. Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
    [Crossref] [PubMed]
  13. C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
    [Crossref] [PubMed]
  14. S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
    [Crossref] [PubMed]
  15. W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
    [Crossref]
  16. N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
    [Crossref] [PubMed]
  17. G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
    [Crossref]
  18. R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
    [Crossref] [PubMed]
  19. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  20. F. Emmanuel and G. Samuel, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
    [Crossref]
  21. J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
    [Crossref] [PubMed]
  22. I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, “Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water,” Appl. Phys. Lett. 94, 063106 (2009).
    [Crossref]
  23. Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
    [Crossref] [PubMed]
  24. Y. Zhou and P. Zhang, “Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles,” Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).
    [Crossref] [PubMed]
  25. S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
    [Crossref] [PubMed]
  26. A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
    [Crossref] [PubMed]
  27. I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
    [Crossref] [PubMed]
  28. S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
    [Crossref] [PubMed]
  29. K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
    [Crossref] [PubMed]
  30. A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
    [Crossref]
  31. A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophoton. 6, 061508 (2012).
  32. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
    [Crossref] [PubMed]
  33. M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
    [Crossref] [PubMed]
  34. X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
    [Crossref]
  35. L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
    [Crossref] [PubMed]
  36. C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
    [Crossref]
  37. C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
    [Crossref] [PubMed]
  38. R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
    [Crossref]
  39. D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
    [Crossref] [PubMed]
  40. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
    [Crossref] [PubMed]
  41. E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
    [Crossref] [PubMed]
  42. S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
    [Crossref] [PubMed]
  43. Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
    [Crossref]
  44. Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
    [Crossref] [PubMed]
  45. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  46. C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
    [Crossref]
  47. C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
    [Crossref]
  48. A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
    [Crossref]

2016 (4)

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref]

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

2015 (5)

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Y. Matsunaga and J.-S. Yang, “Multicolor fluorescence writing based on host–guest interactions and force-induced fluorescence-color memory,” Angew. Chem. Int. Ed. Engl. 54(27), 7985–7989 (2015).
[Crossref] [PubMed]

A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
[Crossref] [PubMed]

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
[Crossref]

2014 (6)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

Y. Zhou and P. Zhang, “Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles,” Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

2013 (4)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
[Crossref] [PubMed]

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

2012 (3)

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

2011 (3)

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

A. M. Rossi and C. W. Taylor, “Analysis of protein-ligand interactions by fluorescence polarization,” Nat. Protoc. 6(3), 365–387 (2011).
[Crossref] [PubMed]

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

2010 (3)

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
[Crossref] [PubMed]

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

2009 (3)

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[Crossref] [PubMed]

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

2008 (2)

F. Emmanuel and G. Samuel, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

2007 (2)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

2006 (2)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

2005 (1)

N. S. White and R. J. Errington, “Fluorescence techniques for drug delivery research: theory and practice,” Adv. Drug Deliv. Rev. 57(1), 17–42 (2005).
[Crossref] [PubMed]

2004 (1)

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

2003 (2)

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

2001 (2)

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

1967 (1)

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Abdulhalim, I.

A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
[Crossref] [PubMed]

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

Adam, P.

Anchel, D.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Aslan, K.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Atoda, N.

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

Badugu, R.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Bai, P.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Bar-Noam, A. S.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref]

Bartko, A. P.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

Bauch, M.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
[Crossref] [PubMed]

Bauer, J.

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

Bazett-Jones, D. P.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Bishop, E. S.

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Brancati, F. L.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Büchel, D.

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

Casas-Finet, J. R.

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Chaudhary, A.

A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
[Crossref] [PubMed]

Chen, B.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Chen, B. K.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Chen, X.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Chen, Y.-F.

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Cheng, K.-C.

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Chuang, C.-M.

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Coresh, J.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Cui, S.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Dai, D.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Dai, P.-P.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Dickson, R. M.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

Dong, B.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Dong, Z.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Dostalek, J.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

M. Bauch and J. Dostalek, “Collective localized surface plasmons for high performance fluorescence biosensing,” Opt. Express 21(17), 20470–20483 (2013).
[Crossref] [PubMed]

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Dostálek, J.

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Dragan, A. I.

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Emmanuel, F.

F. Emmanuel and G. Samuel, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Erfurth, W.

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

Errington, R. J.

N. S. White and R. J. Errington, “Fluorescence techniques for drug delivery research: theory and practice,” Adv. Drug Deliv. Rev. 57(1), 17–42 (2005).
[Crossref] [PubMed]

Fan, J.

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

Fang, C.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Farah, N.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref]

Fromm, D. P.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

Fu, Y.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
[Crossref] [PubMed]

Fuhrmann, B.

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

Ge, J.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Geddes, C. D.

R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
[Crossref]

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Gerlach, J. W.

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

Gomez Rivas, J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Gong, Q.-H.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Gong, Z.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Grüner, C.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

Gryczynski, I.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Hamo, H. B.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

Han, Y. D.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Haugland, R. P.

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Homola, J.

Huang, C.-J.

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Huang, H.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Huang, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Hug, I.

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

Jansen, O. T. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Jeong, C. Y.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Jia, Y.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Jiang, H.-B.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Jiang, R.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Karolin, J. O.

R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
[Crossref]

Khalaila, I.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

Khare, C.

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

Kim, M. S.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Klebanov, M.

A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
[Crossref] [PubMed]

Knoll, W.

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[Crossref] [PubMed]

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Ku, Y.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Kushmaro, A.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

Kwaka, K.

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

Lakowicz, J. R.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
[Crossref] [PubMed]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Li, B.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Li, C.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Li, X.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Liedberg, B.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Liu, C.-L.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Liu, J.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Liu, N.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Liu, R.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Liu, X.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Liu, Y.-C.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lozano, G.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Lukomska, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Lussi, A.

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

Malicka, J.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Marks, R. S.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

Matsunaga, Y.

Y. Matsunaga and J.-S. Yang, “Multicolor fluorescence writing based on host–guest interactions and force-induced fluorescence-color memory,” Angew. Chem. Int. Ed. Engl. 54(27), 7985–7989 (2015).
[Crossref] [PubMed]

Matsushita, K.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Matveeva, E.

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Mihalcea, C.

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

Milenin, A.

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

Moerner, W. E.

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

Murai, S.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Neuhaus, K. W.

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

Pan, X.-Y.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Pankow, J.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Park, Y. M.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Patzig, C.

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

Peyser, L. A.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

Qiao, S.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Rauschenbach, B.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

Richards, D.

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

Rodrigues, J. A.

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

Rodriguez, S. R. K.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Rossi, A. M.

A. M. Rossi and C. W. Taylor, “Analysis of protein-ligand interactions by fluorescence polarization,” Nat. Protoc. 6(3), 365–387 (2011).
[Crossref] [PubMed]

Samuel, G.

F. Emmanuel and G. Samuel, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

Schenerman, M. A.

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Schmitz, R. D.

R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
[Crossref]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Selvin, E.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Sessitsch, A.

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Shalabney, A.

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Shoham, S.

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref]

Song, H.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Song, S. Y.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Srivastava, S. K.

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

Steffes, M. W.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Strouse, R. J.

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Stryer, L.

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Su, W.-F.

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Sun, Y.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Taylor, C. W.

A. M. Rossi and C. W. Taylor, “Analysis of protein-ligand interactions by fluorescence polarization,” Nat. Protoc. 6(3), 365–387 (2011).
[Crossref] [PubMed]

Toma, K.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

K. Toma, M. Vala, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Compact surface plasmon-enhanced fluorescence biochip,” Opt. Express 21(8), 10121–10132 (2013).
[Crossref] [PubMed]

Toma, M.

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Tominaga, J.

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

Vala, M.

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Vinson, A. E.

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

Wagenknecht, L.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Wang, J.

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Wang, X.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Wang, X.-L.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Wang, Y.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[Crossref] [PubMed]

White, N. S.

N. S. White and R. J. Errington, “Fluorescence techniques for drug delivery research: theory and practice,” Adv. Drug Deliv. Rev. 57(1), 17–42 (2005).
[Crossref] [PubMed]

Wong, T. I.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Wu, J.-L.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Wu, L.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Wu, M.-C.

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Xu, B.-X.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Xu, J.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Xu, S.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Xu, W.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Yang, J.-S.

Y. Matsunaga and J.-S. Yang, “Multicolor fluorescence writing based on host–guest interactions and force-induced fluorescence-color memory,” Angew. Chem. Int. Ed. Engl. 54(27), 7985–7989 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Yang, Y. J.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Yin, Z.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Yoon, H. C.

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Zhang, J.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
[Crossref] [PubMed]

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

Zhang, P.

Y. Zhou and P. Zhang, “Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles,” Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).
[Crossref] [PubMed]

Zhang, Q.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Zhang, Q.-F.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Zhang, X.-T.

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

Zhang, X.-Y.

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

Zhou, C.

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

Zhou, D.

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Zhou, X.

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou and P. Zhang, “Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles,” Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).
[Crossref] [PubMed]

Zhu, H.

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

N. S. White and R. J. Errington, “Fluorescence techniques for drug delivery research: theory and practice,” Adv. Drug Deliv. Rev. 57(1), 17–42 (2005).
[Crossref] [PubMed]

Adv. Mater. (1)

R. Jiang, B. Li, C. Fang, and J. Wang, “Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications,” Adv. Mater. 26(31), 5274–5309 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

C.-J. Huang, J. Dostalek, A. Sessitsch, and W. Knoll, “Long-range surface plasmon-enhanced fluorescence spectroscopy biosensor for ultrasensitive detection of E. coli O157:H7,” Anal. Chem. 83(3), 674–677 (2011).
[Crossref] [PubMed]

Analyst (Lond.) (1)

S. K. Srivastava, H. B. Hamo, A. Kushmaro, R. S. Marks, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “Highly sensitive and specific detection of E. coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films,” Analyst (Lond.) 140(9), 3201–3209 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Y. Matsunaga and J.-S. Yang, “Multicolor fluorescence writing based on host–guest interactions and force-induced fluorescence-color memory,” Angew. Chem. Int. Ed. Engl. 54(27), 7985–7989 (2015).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C.-M. Chuang, M.-C. Wu, W.-F. Su, K.-C. Cheng, and Y.-F. Chen, “High intensity fluorescence of photoactivated silver oxide from composite thin film with periodic array structure,” Appl. Phys. Lett. 89(6), 061912 (2006).
[Crossref]

Biointerphases (1)

J. Dostálek and W. Knoll, “Biosensors based on surface plasmon-enhanced fluorescence spectroscopy,” Biointerphases 3(3), FD12–FD22 (2008).
[Crossref] [PubMed]

Biosens. Bioelectron. (2)

Y. Wang, J. Dostálek, and W. Knoll, “Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk,” Biosens. Bioelectron. 24(7), 2264–2267 (2009).
[Crossref] [PubMed]

S. Y. Song, Y. D. Han, Y. M. Park, C. Y. Jeong, Y. J. Yang, M. S. Kim, Y. Ku, and H. C. Yoon, “Bioelectrocatalytic detection of glycated hemoglobin (HbA1c) based on the competitive binding of target and signaling glycoproteins to a boronate-modified surface,” Biosens. Bioelectron. 35(1), 355–362 (2012).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

R. D. Schmitz, J. O. Karolin, and C. D. Geddes, “Plasmonic enhancement of intrinsic carbon nanodot emission,” Chem. Phys. Lett. 622, 124–127 (2015).
[Crossref]

A. I. Dragan, E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes, “Metal-enhanced ethidium bromide emission: Application to dsDNA detection,” Chem. Phys. Lett. 480(4-6), 296–299 (2009).
[Crossref]

Chin. Phys. Lett. (1)

X.-Y. Pan, H.-B. Jiang, C.-L. Liu, Q.-H. Gong, X.-Y. Zhang, Q.-F. Zhang, B.-X. Xu, and J.-L. Wu, “Fluorescence microscopy of nanoscale silver oxide thin films,” Chin. Phys. Lett. 20(1), 133–136 (2003).
[Crossref]

J. Am. Chem. Soc. (2)

C. Mihalcea, D. Büchel, N. Atoda, and J. Tominaga, “Intrinsic fluorescence and quenching effects in photoactivated reactively sputtered silver oxide layers,” J. Am. Chem. Soc. 123(29), 7172–7173 (2001).
[Crossref] [PubMed]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods,” J. Am. Chem. Soc. 132(16), 5540–5541 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. A. Rodrigues, I. Hug, K. W. Neuhaus, and A. Lussi, “Light-emitting diode and laser fluorescence-based devices in detecting occlusal caries,” J. Biomed. Opt. 16(10), 107003 (2011).
[Crossref] [PubMed]

J. Fluoresc. (1)

J. R. Lakowicz, C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, K. Aslan, J. Lukomska, E. Matveeva, J. Zhang, R. Badugu, and J. Huang, “Advances in surface-enhanced fluorescence,” J. Fluoresc. 14(4), 425–441 (2004).
[Crossref] [PubMed]

J. Nanophotonics (1)

A. Shalabney, C. Khare, J. Bauer, B. Rauschenbach, and I. Abdulhalim, “Detailed study of surface-enhanced Raman scattering from metallic nanosculptured thin films and their potential for biosensing,” J. Nanophotonics 6(1), 061605 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

F. Emmanuel and G. Samuel, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys. 41(1), 013001 (2008).
[Crossref]

J. Vac. Sci. Technol. A (1)

C. Khare, C. Patzig, J. W. Gerlach, B. Rauschenbach, and B. Fuhrmann, “Influence of substrate temperature on glancing angle deposited Ag nanorods,” J. Vac. Sci. Technol. A 28(4), 1002–1009 (2010).
[Crossref]

J. Vac. Sci. Technol. B (1)

C. Patzig, B. Rauschenbach, W. Erfurth, and A. Milenin, “Ordered silicon nanostructures by ion beam induced glancing angle deposition,” J. Vac. Sci. Technol. B 25(3), 833–838 (2007).
[Crossref]

Light Sci. Appl. (4)

G. Lozano, D. J. Louwers, S. R. K. Rodriguez, S. Murai, O. T. A. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl. 2(5), e66 (2013).
[Crossref]

Z. Gong, B. K. Chen, J. Liu, C. Zhou, D. Anchel, X. Li, J. Ge, D. P. Bazett-Jones, and Y. Sun, “Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures,” Light Sci. Appl. 3(11), e224 (2014).
[Crossref]

A. S. Bar-Noam, N. Farah, and S. Shoham, “Correction-free remotely scanned two-photon in vivo mouse retinal imaging,” Light Sci. Appl. 5(1), e16007 (2016).
[Crossref]

P.-P. Dai, C. Li, X.-T. Zhang, J. Xu, X. Chen, X.-L. Wang, Y. Jia, X. Wang, and Y.-C. Liu, “A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes,” Light Sci. Appl. 5, e16024 (2016).
[Crossref]

N. Engl. J. Med. (1)

E. Selvin, M. W. Steffes, H. Zhu, K. Matsushita, L. Wagenknecht, J. Pankow, J. Coresh, and F. L. Brancati, “Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults,” N. Engl. J. Med. 362(9), 800–811 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Nanoscale (1)

Y. Wang, L. Wu, T. I. Wong, M. Bauch, Q. Zhang, J. Zhang, X. Liu, X. Zhou, P. Bai, J. Dostalek, and B. Liedberg, “Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing,” Nanoscale 8(15), 8008–8016 (2016).
[Crossref] [PubMed]

Nanotechnology (3)

D. Dai, Z. Dong, and J. Fan, “Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling,” Nanotechnology 24(2), 025201 (2013).
[Crossref] [PubMed]

A. Chaudhary, M. Klebanov, and I. Abdulhalim, “PbS nanosculptured thin film for phase retarder, anti-reflective, excellent absorber, polarizer and sensor applications,” Nanotechnology 26(46), 465703 (2015).
[Crossref] [PubMed]

N. I. Cade, T. Ritman-Meer, K. Kwaka, and D. Richards, “The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering,” Nanotechnology 20(28), 285201 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. M. Rossi and C. W. Taylor, “Analysis of protein-ligand interactions by fluorescence polarization,” Nat. Protoc. 6(3), 365–387 (2011).
[Crossref] [PubMed]

New J. Chem. (1)

Y. Yang, N. Liu, S. Qiao, R. Liu, H. Huang, and Y. Liu, “Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane,” New J. Chem. 39(4), 2815–2821 (2015).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (1)

Y. Zhou and P. Zhang, “Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core-shell nanoparticles,” Phys. Chem. Chem. Phys. 16(19), 8791–8794 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006).
[Crossref] [PubMed]

Plasmonics (1)

M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-enhanced fluorescence biosensors: a review,” Plasmonics 9(4), 781–799 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Stryer and R. P. Haugland, “Energy transfer: a spectroscopic ruler,” Proc. Natl. Acad. Sci. U.S.A. 58(2), 719–726 (1967).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

W. E. Moerner and D. P. Fromm, “Methods of single-molecule fluorescence spectroscopy and microscopy,” Rev. Sci. Instrum. 74(8), 3597–3619 (2003).
[Crossref]

Sci. Rep. (1)

S. Xu, B. Dong, D. Zhou, Z. Yin, S. Cui, W. Xu, B. Chen, and H. Song, “Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers,” Sci. Rep. 6, 23406 (2016).
[Crossref] [PubMed]

Science (1)

L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated fluorescence from individual silver nanoclusters,” Science 291(5501), 103–106 (2001).
[Crossref] [PubMed]

Small (2)

I. Abdulhalim, “Plasmonic sensing using metallic nano-sculptured thin films,” Small 10(17), 3499–3514 (2014).
[Crossref] [PubMed]

S. K. Srivastava, A. Shalabney, I. Khalaila, C. Grüner, B. Rauschenbach, and I. Abdulhalim, “SERS biosensor using metallic nano-sculptured thin films for the detection of endocrine disrupting compound biomarker vitellogenin,” Small 10(17), 3579–3587 (2014).
[Crossref] [PubMed]

Other (4)

I. Abdulhalim, A. Karabchevsky, C. Patzig, B. Rauschenbach, B. Fuhrmann, E. Eltzov, R. Marks, J. Xu, F. Zhang, and A. Lakhtakia, “Surface-enhanced fluorescence from metal sculptured thin films with application to biosensing in water,” Appl. Phys. Lett. 94, 063106 (2009).
[Crossref]

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophoton. 6, 061508 (2012).

F. S. Ligler, “Fluorescence-Based Optical Biosensors,” in Biophotonics, L. Pavesi, and P. M. Fauchet, eds. (Springer Berlin Heidelberg, 2008), pp. 199–215.

M. R. Eftink, “Fluorescence Techniques for Studying Protein Structure,” in Methods of Biochemical Analysis (John Wiley & Sons, Inc., 2006), pp. 127–205.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup for SEF microscopy/spectroscopy.

Fig. 2
Fig. 2

(a) Intrinsic fluorescence image of CO-nSTF with 30% porosity (b) Schematic of enhanced fluorescence from one nanorod of CO-nSTF.

Fig. 3
Fig. 3

XPS scans for (a) all the constituents –survey scan, (b) Si -, (c) C -, (d) Ag -, (e) O - in the CO-nSTF with 30% porosity, (f) CO-nSTF after etching about 10 nm of the film. Inset shows the O1s scan counts as compared to that in Fig. 3(e).

Fig. 4
Fig. 4

(a) Intrinsic fluorescence spectra for varying porosity of CO-nSTFs, (b) Surface enhanced fluorescence spectra from spin coated rhodamine123 over nSTFs of varying porosity.

Fig. 5
Fig. 5

Schematic of the sensor chip fabrication.

Fig. 6
Fig. 6

Enhanced intrinsic fluorescence spectra for varying concentrations of (a) HbA1c- and, (b) Hb- on the CO-nSTF sensor chip.

Fig. 7
Fig. 7

Response curves obtained from the intrinsic fluorescence images and spectra of the sensor chip for varying concentrations of HbA1c and Hb.

Fig. 8
Fig. 8

Schematic of - (a) GLAD setup, (b) nano-columns formation; (c) SEM images of nSTFs of 30%porosity and 300 nm height.

Tables (1)

Tables Icon

Table 1 Elemental ID and quantification from XPS measurements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I SEF / N Ads I Bulk / N Bulk

Metrics