Abstract

We report a setup for high-resolution two-photon spectroscopy using a mid-infrared continuous wave optical parametric oscillator (CW-OPO) and a near-infrared diode laser as the excitation sources, both of which are locked to fully stabilized optical frequency combs. The diode laser is directly locked to a commercial near-infrared optical frequency comb using an optical phase-locked loop. The near-infrared frequency comb is also used to synchronously pump a degenerate femtosecond optical parametric oscillator to produce a fully stabilized mid-infrared frequency comb. The beat frequency between the mid-infrared comb and the CW-OPO is then stabilized through frequency locking. We used the setup to measure a double resonant two-photon transition to a symmetric vibrational state of acetylene with a sub-Doppler resolution and high signal-to-noise ratio.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy

Markku Vainio and Juho Karhu
Opt. Express 25(4) 4190-4200 (2017)

Frequency-comb-referenced mid-infrared source for high-precision spectroscopy

Jari Peltola, Markku Vainio, Thomas Fordell, Tuomas Hieta, Mikko Merimaa, and Lauri Halonen
Opt. Express 22(26) 32429-32439 (2014)

Frequency comb metrology with an optical parametric oscillator

K. Balskus, S. Schilt, V. J. Wittwer, P. Brochard, T. Ploetzing, N. Jornod, R. A. McCracken, Z. Zhang, A. Bartels, D.T. Reid, and T. Südmeyer
Opt. Express 24(8) 8370-8381 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
    [Crossref]
  2. M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
    [Crossref] [PubMed]
  3. J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
    [Crossref] [PubMed]
  4. W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
    [Crossref]
  5. A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
    [Crossref] [PubMed]
  6. M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
    [Crossref]
  7. M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
    [Crossref]
  8. F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, and P. De Natale, “Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference,” Opt. Lett. 37(23), 4811–4813 (2012).
    [Crossref] [PubMed]
  9. E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26(18), 1430–1432 (2001).
    [Crossref] [PubMed]
  10. I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization,” Opt. Lett. 40(20), 4743–4746 (2015).
    [Crossref] [PubMed]
  11. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  12. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  13. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  14. E. Benkler, F. Rohde, and H. R. Telle, “Endless frequency shifting of optical frequency comb lines,” Opt. Express 21(5), 5793–5802 (2013).
    [Crossref] [PubMed]
  15. T. Fordell, A. E. Wallin, T. Lindvall, M. Vainio, and M. Merimaa, “Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling,” Appl. Opt. 53(31), 7476–7482 (2014).
    [Crossref] [PubMed]
  16. M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
    [Crossref] [PubMed]
  17. A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  18. F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
    [Crossref] [PubMed]
  19. V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, “High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator,” Opt. Express 22(9), 10535–10543 (2014).
    [Crossref] [PubMed]
  20. P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
    [Crossref]
  21. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref] [PubMed]
  22. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
    [Crossref] [PubMed]
  23. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  24. N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
    [Crossref] [PubMed]
  25. I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
    [Crossref] [PubMed]
  26. M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
    [Crossref] [PubMed]
  27. J. Peltola, M. Vainio, T. Fordell, T. Hieta, M. Merimaa, and L. Halonen, “Frequency-comb-referenced mid-infrared source for high-precision spectroscopy,” Opt. Express 22(26), 32429–32439 (2014).
    [Crossref] [PubMed]
  28. I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39(17), 5050–5053 (2014).
    [Crossref] [PubMed]
  29. A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
    [Crossref]
  30. J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
    [Crossref]
  31. D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
    [Crossref]
  32. M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010).
    [Crossref] [PubMed]
  33. S. T. Wong, K. L. Vodopyanov, and R. L. Byer, “Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source,” J. Opt. Soc. Am. B 27(5), 876–882 (2010).
    [Crossref]
  34. M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
    [Crossref]
  35. J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
    [Crossref]
  36. H. K. Holt, “Frequency-correlation effects in cascade transitions involving stimulated emission,” Phys. Rev. Lett. 19(22), 1275–1277 (1967).
    [Crossref]
  37. D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).
  38. J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
    [Crossref]

2017 (2)

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
[Crossref]

2016 (3)

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref] [PubMed]

2015 (3)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization,” Opt. Lett. 40(20), 4743–4746 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (2)

E. Benkler, F. Rohde, and H. R. Telle, “Endless frequency shifting of optical frequency comb lines,” Opt. Express 21(5), 5793–5802 (2013).
[Crossref] [PubMed]

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

2010 (2)

2009 (1)

2006 (1)

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

2003 (2)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

2001 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

1997 (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

1993 (1)

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

1991 (1)

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

1976 (1)

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

1975 (1)

W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
[Crossref]

1974 (1)

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[Crossref]

1967 (1)

H. K. Holt, “Frequency-correlation effects in cascade transitions involving stimulated emission,” Phys. Rev. Lett. 19(22), 1275–1277 (1967).
[Crossref]

Adler, F.

Akikusa, N.

Baba, M.

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

Barbe, A.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Bartalini, S.

Benkler, E.

Bermejo, D.

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

Bischel, W. K.

W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[Crossref]

Blaser, S.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Blass, W. E.

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

Borri, S.

Boucher, R.

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Braxmaier, C.

Breton, M.

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Byer, R. L.

Cancio, P.

Cappelli, F.

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Claveau, C.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Cossel, K. C.

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Cyr, N.

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Dana, V.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

De Natale, P.

De Rosa, M.

De Tommasi, E.

Dekorsy, D.

Di Lonardo, G.

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Faist, J.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Fermann, M.

Fermann, M. E.

Fordell, T.

Fusina, L.

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

Gaeta, A. L.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Gagliardi, G.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Galli, I.

Giusfredi, G.

Griffith, A. G.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Halonen, L.

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref] [PubMed]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, “High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator,” Opt. Express 22(9), 10535–10543 (2014).
[Crossref] [PubMed]

J. Peltola, M. Vainio, T. Fordell, T. Hieta, M. Merimaa, and L. Halonen, “Frequency-comb-referenced mid-infrared source for high-precision spectroscopy,” Opt. Express 22(26), 32429–32439 (2014).
[Crossref] [PubMed]

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010).
[Crossref] [PubMed]

Halsey, G. W.

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hartl, I.

Herman, M.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Hieta, T.

Hillman, J. J.

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

Hoekstra, S.

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

Holt, H. K.

H. K. Holt, “Frequency-correlation effects in cascade transitions involving stimulated emission,” Phys. Rev. Lett. 19(22), 1275–1277 (1967).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hugi, A.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Jacquemart, D.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Jennings, D. E.

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

Jiang, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Kachanov, A. A.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

Karhu, J.

M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
[Crossref]

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

Kato, H.

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

Kelly, P. J.

W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
[Crossref]

Kovalchuk, E. V.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Leindecker, N.

Liao, P. F.

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[Crossref]

Lindvall, T.

Lipson, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Lvovsky, A. I.

Maddaloni, P.

Malara, P.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Mandin, J. Y.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Marandi, A.

Martínez, R. Z.

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

Matsuba, A.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Mazzotti, D.

Merimaa, M.

Metsälä, M.

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

Minoshima, K.

Misono, M.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

Mlynek, J.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Montori, A.

Mosca, S.

Nadler, S.

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

Nakagawa, K.

Nakajima, Y.

Nakashima, K.

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Natale, P. D.

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Nauta, J.

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

Nishiyama, A.

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Okubo, M.

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

Onae, A.

Parisi, M.

Peltola, J.

Peters, A.

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Phillips, C. R.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Régalia-Jarlot, L.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Rhodes, C. K.

W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
[Crossref]

Ricciardi, I.

Rocco, A.

Rohde, F.

Romanini, D.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

Rothman, L. S.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Sadeghi, N.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

Santamaria, L.

Sasada, H.

Schiller, S.

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schunemann, P. G.

Siltanen, M.

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Stoeckel, F.

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

Telle, H. R.

Tetu, M.

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Thorpe, M. J.

Tremblay, P.

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Ulvila, V.

Vainio, M.

M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
[Crossref]

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref] [PubMed]

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, “High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator,” Opt. Express 22(9), 10535–10543 (2014).
[Crossref] [PubMed]

J. Peltola, M. Vainio, T. Fordell, T. Hieta, M. Merimaa, and L. Halonen, “Frequency-comb-referenced mid-infrared source for high-precision spectroscopy,” Opt. Express 22(26), 32429–32439 (2014).
[Crossref] [PubMed]

T. Fordell, A. E. Wallin, T. Lindvall, M. Vainio, and M. Merimaa, “Frequency-comb-referenced tunable diode laser spectroscopy and laser stabilization applied to laser cooling,” Appl. Opt. 53(31), 7476–7482 (2014).
[Crossref] [PubMed]

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010).
[Crossref] [PubMed]

Vander Auwera, J.

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

Villares, G.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

Vodopyanov, K. L.

Wallin, A. E.

Wang, J.

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wong, S. T.

Yamanishi, M.

Ye, J.

Yoshida, S.

Yu, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Zondy, J. J.

Appl. Opt. (1)

Chem. Phys. Lett. (1)

D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, “CW cavity ring down spectroscopy,” Chem. Phys. Lett. 264(3–4), 316–322 (1997).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

M. Breton, N. Cyr, P. Tremblay, M. Tetu, and R. Boucher, “Frequency locking of a 1324 nm DFB laser to an optically pumped rubidium vapor,” IEEE Trans. Instrum. Meas. 42(2), 162–166 (1993).
[Crossref]

J. Chem. Phys. (3)

M. Siltanen, M. Metsälä, M. Vainio, and L. Halonen, “Experimental observation and analysis of the 3ν(1)(Σ(g)) stretching vibrational state of acetylene using continuous-wave infrared stimulated emission,” J. Chem. Phys. 139(5), 054201 (2013).
[Crossref] [PubMed]

J. Karhu, J. Nauta, M. Vainio, M. Metsälä, S. Hoekstra, and L. Halonen, “Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy,” J. Chem. Phys. 144(24), 244201 (2016).
[Crossref] [PubMed]

M. Okubo, M. Misono, J. Wang, M. Baba, and H. Kato, “The Doppler-free two-photon absorption spectroscopy of naphthalene with Zeeman effects,” J. Chem. Phys. 116(21), 9293–9299 (2002).
[Crossref]

J. Mol. Spectrosc. (2)

A. Nishiyama, K. Nakashima, A. Matsuba, and M. Misono, “Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb,” J. Mol. Spectrosc. 318, 40–45 (2015).
[Crossref]

J. J. Hillman, D. E. Jennings, G. W. Halsey, S. Nadler, and W. E. Blass, “An infrared study of the bending region of acetylene,” J. Mol. Spectrosc. 146(2), 389–401 (1991).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

D. Jacquemart, J. Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L. S. Rothman, L. Régalia-Jarlot, and A. Barbe, “The IR acetylene spectrum in HITRAN: update and new results,” J. Quant. Spectrosc. Radiat. Transf. 82(1–4), 363–382 (2003).

J. Raman Spectrosc. (1)

R. Z. Martínez, D. Bermejo, G. Di Lonardo, and L. Fusina, “High resolution stimulated Raman spectroscopy from collisionally populated states after optical pumping: the 3ν2← 2ν2 and ν2+ 2ν4+ ν5← 2ν4+ ν5 Q branches of 12C2H2 and the 3ν2← 2ν2 Q branch of 12C2D2,” J. Raman Spectrosc. 48(2), 251–257 (2017).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Nature (2)

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492(7428), 229–233 (2012).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

P. Maddaloni, P. Malara, G. Gagliardi, and P. D. Natale, “Mid-infrared fibre-based optical comb,” New J. Phys. 8(11), 262 (2006).
[Crossref]

Opt. Express (9)

A. Nishiyama, S. Yoshida, Y. Nakajima, H. Sasada, K. Nakagawa, A. Onae, and K. Minoshima, “Doppler-free dual-comb spectroscopy of Rb using optical-optical double resonance technique,” Opt. Express 24(22), 25894–25904 (2016).
[Crossref] [PubMed]

M. Vainio and J. Karhu, “Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy,” Opt. Express 25(4), 4190–4200 (2017).
[Crossref]

J. Peltola, M. Vainio, T. Fordell, T. Hieta, M. Merimaa, and L. Halonen, “Frequency-comb-referenced mid-infrared source for high-precision spectroscopy,” Opt. Express 22(26), 32429–32439 (2014).
[Crossref] [PubMed]

E. Benkler, F. Rohde, and H. R. Telle, “Endless frequency shifting of optical frequency comb lines,” Opt. Express 21(5), 5793–5802 (2013).
[Crossref] [PubMed]

V. Ulvila, C. R. Phillips, L. Halonen, and M. Vainio, “High-power mid-infrared frequency comb from a continuous-wave-pumped bulk optical parametric oscillator,” Opt. Express 22(9), 10535–10543 (2014).
[Crossref] [PubMed]

M. Siltanen, M. Vainio, and L. Halonen, “Pump-tunable continuous-wave singly resonant optical parametric oscillator from 2.5 to 4.4 microm,” Opt. Express 18(13), 14087–14092 (2010).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, and K. L. Vodopyanov, “Broadband degenerate OPO for mid-infrared frequency comb generation,” Opt. Express 19(7), 6296–6302 (2011).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

I. Ricciardi, E. De Tommasi, P. Maddaloni, S. Mosca, A. Rocco, J. J. Zondy, M. De Rosa, and P. De Natale, “Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy,” Opt. Express 20(8), 9178–9186 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

F. Cappelli, I. Galli, S. Borri, G. Giusfredi, P. Cancio, D. Mazzotti, A. Montori, N. Akikusa, M. Yamanishi, S. Bartalini, and P. De Natale, “Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference,” Opt. Lett. 37(23), 4811–4813 (2012).
[Crossref] [PubMed]

E. V. Kovalchuk, D. Dekorsy, A. I. Lvovsky, C. Braxmaier, J. Mlynek, A. Peters, and S. Schiller, “High-resolution Doppler-free molecular spectroscopy with a continuous-wave optical parametric oscillator,” Opt. Lett. 26(18), 1430–1432 (2001).
[Crossref] [PubMed]

F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye, “Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 microm,” Opt. Lett. 34(9), 1330–1332 (2009).
[Crossref] [PubMed]

M. Vainio, M. Merimaa, and L. Halonen, “Frequency-comb-referenced molecular spectroscopy in the mid-infrared region,” Opt. Lett. 36(21), 4122–4124 (2011).
[Crossref] [PubMed]

I. Galli, S. Bartalini, P. Cancio, F. Cappelli, G. Giusfredi, D. Mazzotti, N. Akikusa, M. Yamanishi, and P. De Natale, “Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy,” Opt. Lett. 39(17), 5050–5053 (2014).
[Crossref] [PubMed]

I. Ricciardi, S. Mosca, M. Parisi, P. Maddaloni, L. Santamaria, P. De Natale, and M. De Rosa, “Sub-kilohertz linewidth narrowing of a mid-infrared optical parametric oscillator idler frequency by direct cavity stabilization,” Opt. Lett. 40(20), 4743–4746 (2015).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. Vainio and L. Halonen, “Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy,” Phys. Chem. Chem. Phys. 18(6), 4266–4294 (2016).
[Crossref] [PubMed]

Phys. Rev. A (1)

J. E. Bjorkholm and P. F. Liao, “Line shape and strength of two-photon absorption in an atomic vapor with a resonant or nearly resonant intermediate state,” Phys. Rev. A 14(2), 751–760 (1976).
[Crossref]

Phys. Rev. Lett. (3)

H. K. Holt, “Frequency-correlation effects in cascade transitions involving stimulated emission,” Phys. Rev. Lett. 19(22), 1275–1277 (1967).
[Crossref]

J. E. Bjorkholm and P. F. Liao, “Resonant enhancement of two-photon absorption in sodium vapor,” Phys. Rev. Lett. 33(3), 128–131 (1974).
[Crossref]

W. K. Bischel, P. J. Kelly, and C. K. Rhodes, “Observation of Doppler-free two-photon absorption in the ν3 bands of CH3F,” Phys. Rev. Lett. 34(6), 300–303 (1975).
[Crossref]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic overview of the setup. A diode laser (ECDL) is locked to a commercial fully stabilized near-infrared frequency comb (OFC) with an optical phase-locked loop. An acousto-optical modulator (AOM) is used to initiate ring-down events. The CW-OPO idler is locked to a mid-infrared comb produced by a synchronously pumped femtosecond OPO (fs-OPO). Their beat note is measured and fed through a frequency-to-voltage converter (F/V) to an integrator, which tunes the CW-OPO cavity length via a piezo actuator, to stabilize the beat note. After the measurement cavity, a power meter (PM) determines the transmitted idler power and a photodiode (PD) measures the ring-down signals at the ECDL wavelength. Wavemeters (WM) are used for approximate wavelength measurements. They also help to determine the frequency comb mode numbers and the fs-OPO carrier-envelope offset frequency.

Fig. 2
Fig. 2

Schematic layout of the ECDL phase lock. The ECDL and optical frequency comb (OFC) beams are overlaid with a 50/50-fiber coupler. The comb spectrum around the ECDL is separated from the rest of the comb with a reflective grating and the beat note between the ECDL and OFC lines is detected with a photodiode (PD). The beat note is mixed with a local oscillator (LO) frequency from a signal generator. The locking filters (LF) tune the ECDL to bring the difference frequency between the beat note and the LO frequencies to zero.

Fig. 3
Fig. 3

Spectrum of the beat note between the ECDL and the frequency comb when the phase-lock is established. The resolution bandwidth (RBW) was 30 kHz. The frequency axis provides the difference from the locking point (50 MHz).

Fig. 4
Fig. 4

Schematic overview of the CW-OPO locking. A near-infrared frequency comb (OFC) is amplified (EDFA) and used to synchronously pump a pulsed OPO (fs-OPO). The idler beam from a continuous-wave mid-infrared OPO (CW-OPO), pumped with a CW Ti:Sapphire laser (MBR), is overlaid with the fs-OPO beam and their beat note is measured with a photodetector (MIR-PD). The beat note frequency is converted into an input signal for an integrator (I) with a frequency-to-voltage converter circuit (F/V). The integrator tunes the CW-OPO cavity with a piezo-actuator to stabilize the beat note frequency. The CW-OPO wavelength is also measured with a wavemeter connected to a spectrum analyzer (WM + SA).

Fig. 5
Fig. 5

Spectra of the beat note between the CW-OPO and the fs-OPO when the CW-OPO was locked, measured with a sweep time of a) 150 ms (100 kHz RBW) and b) 1 s (100 kHz RBW). Figure a) is a direct trace from the spectrum analyzer, showing also the background noise and the detector bandwidth. In figure b), the power scale is linear and the background has been subtracted.

Fig. 6
Fig. 6

Energy diagram showing the principle of the spectroscopic measurement. A CW-OPO idler wavelength is tuned to the side of a strong mid-infrared transitions and the ECDL is scanned over near-infrared transition, where the lower state is the one that the CW-OPO is pumping. The symbol GS stands for the vibrational ground state.

Fig. 7
Fig. 7

Schematic representation of the spectroscopic measurement. The ECDL and the CW-OPO beams are overlaid and sent through the cavity. The cavity mirrors are highly reflective at the ECDL wavelength, but not at the CW-OPO wavelength. The measurement cavity is filled with a sample of acetylene gas at a pressure below 1 torr.

Fig. 8
Fig. 8

Comb-assisted two-photon absorption spectrum of transition from the ground state to ν1 + 2ν3, with a resonant intermediate state ν3. The horizontal scale is the wavenumber of the ECDL as it is scanned over the second resonance. The appearance of two peaks is a result of the CW-OPO exciting a narrow Doppler-component to the intermediate state and the standing wave formed by the ECDL probes the Doppler-component with both counter-propagating waves. The broader spectrum on the left hand side corresponds to the case where the two photons come from co-propagating CW-OPO and ECDL waves, and the residual Doppler broadening is enhanced. In the narrow peak on the right hand side, the exciting waves are counter-propagating, partially canceling the residual Doppler-broadening. The small gaps in the spectra are points where the phase-locked loop had dropped and was re-established.

Fig. 9
Fig. 9

Two-photon absorption spectrum with free-running CW-OPO and ECDL. The spectrum shows only the higher frequency peak, corresponding to counter-propagating CW-OPO and ECDL. The asymmetry of the peak is due to the long-term instability of the CW-OPO wavelength, as the scan over the peak takes about 10-20 s. The SNR is about 60.

Tables (1)

Tables Icon

Table 1 Measured transition line positions and the energy of the upper state.

Metrics