Abstract

Spatial solitons can affect and enhance random lasing in optically-pumped dyedoped nematic liquid crystals. Upon launching two collinear beams in the sample, the first to pump the fluorescent guest molecules and the second to induce a reorientational soliton, strikingly the second beam not only guides the emitted photons in the soliton waveguide, but also enhances the lasing efficiency and modulates its spectral width. By altering the scattering paths of the emitted photons, the soliton also contributes to the selection of the lasing modes, as further confirmed by the observed kinks in the input/output characteristics. These experimental results demonstrate that random lasing can be efficiently controlled by a light beam which does not interact with the gain molecules, opening a route towards light-controlled random lasers.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Random lasing and weak localization of light in dye-doped nematic liquid crystals

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino
Opt. Express 14(17) 7737-7744 (2006)

Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles

Lei Wang, Yuan Wan, Lijie Shi, Haizheng Zhong, and Luogen Deng
Opt. Express 24(16) 17593-17602 (2016)

All-optically controllable nanoparticle random laser in a well-aligned laser-dye-doped liquid crystal

Chi-Huang Chang, Chie-Tong Kuo, Han-Ying Sun, Shih-Hung Lin, Chi-Wu Chang, and Shuan-Yu Huang
Opt. Express 24(25) 28739-28747 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Cao, “Lasing in random media,” Waves Random Media 13 (3), R1–R39 (2003).
    [Crossref]
  2. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835 (1968).
  3. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
    [Crossref]
  4. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4 (10), 359–367 (2008).
    [Crossref]
  5. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
    [Crossref] [PubMed]
  6. M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
    [Crossref]
  7. M. Pang, X. Bao, L. Chen, Z. Qin, Y. Lu, and P. Lu, “Frequency stabilized coherent Brillouin random fiber laser: theory and experiments,” Opt. Express 21 (22), 27155–27168 (2013).
    [Crossref] [PubMed]
  8. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85 (7), 1289–1291 (2004).
    [Crossref]
  9. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
    [Crossref] [PubMed]
  10. D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
    [Crossref] [PubMed]
  11. S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
    [Crossref]
  12. S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21 (1), 201–207 (2004).
    [Crossref]
  13. T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
    [Crossref]
  14. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21 (1), 159–167 (2004).
    [Crossref]
  15. S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
    [Crossref]
  16. N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
    [Crossref] [PubMed]
  17. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  18. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
    [Crossref] [PubMed]
  19. M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
    [Crossref]
  20. P. G. DeGennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).
  21. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  22. S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
    [Crossref]
  23. M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147–208 (2012).
    [Crossref]
  24. M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
    [Crossref] [PubMed]
  25. M. Warenghem, J.F. Henninot, and G. Abbate, “Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,” Opt. Express 2 (12), 483–490 (1998).
    [Crossref] [PubMed]
  26. J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
    [Crossref] [PubMed]
  27. M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
    [Crossref]
  28. G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15(8), 5248–5259 (2007)
    [Crossref] [PubMed]
  29. Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Z. Krolikowski, M. BeliÄǦ, G. Assanto, and Y. S. Kivshar, “Counterpropagating nematicons in bias-free liquid crystals,” Opt. Express 18(4), 3258–3263 (2010).
    [Crossref] [PubMed]
  30. A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
    [Crossref]
  31. A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
    [Crossref] [PubMed]
  32. J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
    [Crossref]
  33. S. Bolis, T. Virgili, S. K. Rajendran, J. Beeckman, and P. Kockaert, “Nematicon-driven injection of amplified spontaneous emission into an optical fiber,” Opt. Lett. 41(10), 2245–2248 (2016).
    [Crossref] [PubMed]
  34. I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
    [Crossref] [PubMed]
  35. M. Peccianti, A. Pasquazi, G. Assanto, and R. Morandotti, “Enhancement of third-harmonic generation in nonlocal spatial solitons,” Opt. Lett. 35(20), 3342–3344 (2010).
    [Crossref] [PubMed]
  36. U. A. Laudyn, M. Kwasny, A. Piccardi, M. A. Karpierz, R. Dabrowski, O. Chojnowska, A. Alberucci, and G. Assanto, “Nonlinear competition in nematicon propagation,” Opt. Lett. 40(22), 5235–5238 (2015).
    [Crossref] [PubMed]
  37. J. Yi, Y. Yu, J. Shang, X. An, B. Tu, G. Feng, and S. Zhou, “Waveguide random laser based on a disordered ZnSenanosheets arrangement,” Opt. Express 24(5), 5102–5109 (2016).
    [Crossref]
  38. S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).
  39. E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Mater. 13, 49 (1999).
    [Crossref]
  40. J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
    [Crossref]
  41. I. Jánossy and T. Kósa, “Influence of anthraquinone dyes on optical reorientation of nematic liquid crystals,” Opt. Lett. 17(17), 1183–1185 (1992).
    [Crossref] [PubMed]
  42. L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
    [Crossref]
  43. T. Nakamura, S. Sonoda, T. Yamamoto, and S. Adachi, “Discrete-mode ZnO microparticle random laser,” Opt. Lett. 40(11), 2661–2664 (2015).
    [Crossref] [PubMed]
  44. B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
    [Crossref]
  45. G. van Soest and A. Lagendijk, “Beta factor in a random laser,” Phys. Rev. E 65, 047602 (2002).
    [Crossref]

2016 (4)

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

J. Yi, Y. Yu, J. Shang, X. An, B. Tu, G. Feng, and S. Zhou, “Waveguide random laser based on a disordered ZnSenanosheets arrangement,” Opt. Express 24(5), 5102–5109 (2016).
[Crossref]

S. Bolis, T. Virgili, S. K. Rajendran, J. Beeckman, and P. Kockaert, “Nematicon-driven injection of amplified spontaneous emission into an optical fiber,” Opt. Lett. 41(10), 2245–2248 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (2)

2012 (3)

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147–208 (2012).
[Crossref]

2011 (2)

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

2010 (5)

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
[Crossref] [PubMed]

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[Crossref]

Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Z. Krolikowski, M. BeliÄǦ, G. Assanto, and Y. S. Kivshar, “Counterpropagating nematicons in bias-free liquid crystals,” Opt. Express 18(4), 3258–3263 (2010).
[Crossref] [PubMed]

M. Peccianti, A. Pasquazi, G. Assanto, and R. Morandotti, “Enhancement of third-harmonic generation in nonlocal spatial solitons,” Opt. Lett. 35(20), 3342–3344 (2010).
[Crossref] [PubMed]

2009 (1)

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

2008 (2)

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
[Crossref]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4 (10), 359–367 (2008).
[Crossref]

2007 (1)

2006 (2)

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

2004 (7)

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21 (1), 159–167 (2004).
[Crossref]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21 (1), 201–207 (2004).
[Crossref]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85 (7), 1289–1291 (2004).
[Crossref]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

2003 (1)

H. Cao, “Lasing in random media,” Waves Random Media 13 (3), R1–R39 (2003).
[Crossref]

2002 (1)

G. van Soest and A. Lagendijk, “Beta factor in a random laser,” Phys. Rev. E 65, 047602 (2002).
[Crossref]

2001 (1)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref] [PubMed]

2000 (2)

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

1999 (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Mater. 13, 49 (1999).
[Crossref]

1998 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

1992 (1)

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835 (1968).

Abbate, G.

Adachi, S.

T. Nakamura, S. Sonoda, T. Yamamoto, and S. Adachi, “Discrete-mode ZnO microparticle random laser,” Opt. Lett. 40(11), 2661–2664 (2015).
[Crossref] [PubMed]

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
[Crossref]

Adamow, A.

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

Alberucci, A.

U. A. Laudyn, M. Kwasny, A. Piccardi, M. A. Karpierz, R. Dabrowski, O. Chojnowska, A. Alberucci, and G. Assanto, “Nonlinear competition in nematicon propagation,” Opt. Lett. 40(22), 5235–5238 (2015).
[Crossref] [PubMed]

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
[Crossref] [PubMed]

An, X.

Andreasen, J.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Assanto, G.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

U. A. Laudyn, M. Kwasny, A. Piccardi, M. A. Karpierz, R. Dabrowski, O. Chojnowska, A. Alberucci, and G. Assanto, “Nonlinear competition in nematicon propagation,” Opt. Lett. 40(22), 5235–5238 (2015).
[Crossref] [PubMed]

M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147–208 (2012).
[Crossref]

Y. V. Izdebskaya, V. G. Shvedov, A. S. Desyatnikov, W. Z. Krolikowski, M. BeliÄǦ, G. Assanto, and Y. S. Kivshar, “Counterpropagating nematicons in bias-free liquid crystals,” Opt. Express 18(4), 3258–3263 (2010).
[Crossref] [PubMed]

A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
[Crossref] [PubMed]

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

M. Peccianti, A. Pasquazi, G. Assanto, and R. Morandotti, “Enhancement of third-harmonic generation in nonlocal spatial solitons,” Opt. Lett. 35(20), 3342–3344 (2010).
[Crossref] [PubMed]

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15(8), 5248–5259 (2007)
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

Bachelard, N.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

Bao, X.

Barna, V.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

Bartolino, R.

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

Beeckman, J.

S. Bolis, T. Virgili, S. K. Rajendran, J. Beeckman, and P. Kockaert, “Nematicon-driven injection of amplified spontaneous emission into an optical fiber,” Opt. Lett. 41(10), 2245–2248 (2016).
[Crossref] [PubMed]

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

BeliÄG, M.

Blach, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[Crossref]

Bolis, S.

Buchnev, O.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

Burgess, I.

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

Cambournac, C.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

Cao, H.

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21 (1), 159–167 (2004).
[Crossref]

H. Cao, “Lasing in random media,” Waves Random Media 13 (3), R1–R39 (2003).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Cavalieri, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21 (1), 201–207 (2004).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref] [PubMed]

Chang, R. P. H.

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21 (1), 159–167 (2004).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chang, S.-H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Chen, L.

Chen, Y. H.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Chojnowska, O.

Ciou, B. Y.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Coles, H. J.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

Conti, C.

M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

Dabrowski, R.

De Luca, A.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

DeGennes, P. G.

P. G. DeGennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

Desyatnikov, A. S.

Feng, G.

Ferjani, S.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

Fratalocchi, A.

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

Gigan, S.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

Gottardo, S.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Haelterman, M.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

Hands, P. J. W.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

He, B.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
[Crossref]

Henninot, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[Crossref]

Henninot, J.F.

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Hsiao, Y. L.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Huang, Y.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
[Crossref]

Hutsebaut, X.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

Izdebskaya, Y. V.

Jánossy, I.

Kaczmarek, M.

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

Kaliciak, K.

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

Karpierz, M. A.

Kauranen, M.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

Khoo, I. C.

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

Kivshar, Y. S.

Kockaert, P.

Kósa, T.

Krolikowski, W. Z.

Kwasny, M.

Lagendijk, A.

G. van Soest and A. Lagendijk, “Beta factor in a random laser,” Phys. Rev. E 65, 047602 (2002).
[Crossref]

Laudyn, U. A.

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

Leonetti, M.

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835 (1968).

Liao, Q.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
[Crossref]

Lin, J. H.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Lin, S. H.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Liu, X.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Lopez, C.

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Lu, P.

Lu, Y.

Morandotti, R.

M. Peccianti, A. Pasquazi, G. Assanto, and R. Morandotti, “Enhancement of third-harmonic generation in nonlocal spatial solitons,” Opt. Lett. 35(20), 3342–3344 (2010).
[Crossref] [PubMed]

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

Morris, S. M.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

Mujumdar, S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21 (1), 201–207 (2004).
[Crossref]

Mysliwiec, J.

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

Nakamura, T.

T. Nakamura, S. Sonoda, T. Yamamoto, and S. Adachi, “Discrete-mode ZnO microparticle random laser,” Opt. Lett. 40(11), 2661–2664 (2015).
[Crossref] [PubMed]

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
[Crossref]

Neyts, K.

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

Noh, H.

Pang, M.

Pasquazi, A.

Peccianti, M.

M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147–208 (2012).
[Crossref]

M. Peccianti, A. Pasquazi, G. Assanto, and R. Morandotti, “Enhancement of third-harmonic generation in nonlocal spatial solitons,” Opt. Lett. 35(20), 3342–3344 (2010).
[Crossref] [PubMed]

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: from bulk to discrete,” Opt. Express 15(8), 5248–5259 (2007)
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

Perumbilavil, S.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

Piccardi, A.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

U. A. Laudyn, M. Kwasny, A. Piccardi, M. A. Karpierz, R. Dabrowski, O. Chojnowska, A. Alberucci, and G. Assanto, “Nonlinear competition in nematicon propagation,” Opt. Lett. 40(22), 5235–5238 (2015).
[Crossref] [PubMed]

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
[Crossref] [PubMed]

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85 (7), 1289–1291 (2004).
[Crossref]

Prost, J.

P. G. DeGennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

Qasim, M. M.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

Qin, Z.

Rajendran, S. K.

Reisfeld, R.

E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Mater. 13, 49 (1999).
[Crossref]

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

Scaramuzza, N.

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

Sebbah, P.

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

Seelig, E. W.

X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, and R. P. H. Chang, “Random lasing in closely packed resonant scatterers,” J. Opt. Soc. Am. B 21 (1), 159–167 (2004).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Shang, J.

Shvedov, V. G.

Sonoda, S.

Strangi, G.

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

Sznitko, L.

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

Tiwari, B. P.

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
[Crossref]

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Tu, B.

Umeton, C.

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

van Soest, G.

G. van Soest and A. Lagendijk, “Beta factor in a random laser,” Phys. Rev. E 65, 047602 (2002).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85 (7), 1289–1291 (2004).
[Crossref]

Versace, C.

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14 (17), 7737–7744 (2006).
[Crossref] [PubMed]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

Virgili, T.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Warenghem, M.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[Crossref]

M. Warenghem, J.F. Henninot, and G. Abbate, “Non linearly induced self waveguiding structure in dye doped nematic liquid crystals confined in capillaries,” Opt. Express 2 (12), 483–490 (1998).
[Crossref] [PubMed]

Wiersma, D. S.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4 (10), 359–367 (2008).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am. B 21 (1), 201–207 (2004).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref] [PubMed]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

Wu, J. J.

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

Wu, X. H.

Xu, J. Y.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Yamamoto, T.

Yamilov, A.

Yariv, E.

E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Mater. 13, 49 (1999).
[Crossref]

Yaroshchuk, O.

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

Yi, J.

Yu, Y.

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zhou, S.

Appl. Phys. Lett. (6)

M. Leonetti and C. Lopez, “Active subnanometer spectral control of a random laser,” Appl. Phys. Lett. 102, 071105 (2013).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85 (7), 1289–1291 (2004).
[Crossref]

S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, and G. Strangi, “Thermal behavior of random lasing in dye-doped nematic liquid crystals,” Appl. Phys. Lett. 89, 121109 (2006).
[Crossref]

M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77(1), 7–9 (2000).
[Crossref]

S. Perumbilavil, A. Piccardi, O. Buchnev, M. Kauranen, G. Strangi, and G. Assanto, “Soliton-assisted random lasing in optically-pumped liquid crystals,” Appl. Phys. Lett. 102, 203903 (2016).

T. Nakamura, B. P. Tiwari, and S. Adachi, “Control of random lasing in ZnO Al2O3 nanopowders,” Appl. Phys. Lett. 99, 231105 (2011).
[Crossref]

IEEE Photonics J. (1)

J. H. Lin, Y. L. Hsiao, B. Y. Ciou, S. H. Lin, Y. H. Chen, and J. J. Wu, “Manipulation of random lasing action from dye-doped liquid crystals infilling two-dimensional confinement single core capillary,” IEEE Photonics J. 7(3), 1501809 (2015).
[Crossref]

J. Appl. Phys. (2)

J. F. Henninot, J. F. Blach, and M. Warenghem, “Enhancement of dye fluorescence recovery in nematic liquid crystals using a spatial optical soliton,” J. Appl. Phys. 107, 113111 (2010).
[Crossref]

S. M. Morris, D. J. Gardiner, M. M. Qasim, P. J. W. Hands, T. D. Wilkinson, and H. J. Coles, “Lowering the excitation threshold of a random laser using the dynamic scattering states of an organosiloxane smectic A liquid crystal,” J. Appl. Phys. 111, 033106 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

M. Leonetti, C. Conti, and C. Lopez, “The mode locking transition of random lasers,” Nat. Photonics 5, 615–617 (2011).
[Crossref]

Nat. Phys. (1)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4 (10), 359–367 (2008).
[Crossref]

Nature (3)

D. S. Wiersma and S. Cavalieri, “Light emission: a temperature-tunable random laser,” Nature 414, 708–709 (2001).
[Crossref] [PubMed]

M. Peccianti, C. Conti, G. Assanto, A. De Luca, and C. Umeton, “Routing of anisotropic spatial solitons and modulational instability in nematic liquid crystals,” Nature 432, 733 (2004).
[Crossref] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 36, 436–438 (1994).
[Crossref]

Opt. Express (6)

Opt. Express. (1)

J. Beeckman, K. Neyts, X. Hutsebaut, C. Cambournac, and M. Haelterman, “Simulations and experiments on self-focusing conditions in nematic liquid-crystal planar cells,” Opt. Express. 12(6), 1011–1018 (2004).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mat. (2)

L. Sznitko, K. Kaliciak, A. Adamow, and J. Mysliwiec, “A random laser made of nematic liquid crystal doped with a laser dye,” Opt. Mat. 56, 121–128 (2016).
[Crossref]

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mat. 31, 375–379 (2008).
[Crossref]

Opt. Mater. (1)

E. Yariv and R. Reisfeld, “Laser properties of pyrromethene dyes in sol-gel glasses,” Opt. Mater. 13, 49 (1999).
[Crossref]

Phys. Rep. (1)

M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147–208 (2012).
[Crossref]

Phys. Rev. A (1)

A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82(2), 023806 (2010).
[Crossref]

Phys. Rev. E (1)

G. van Soest and A. Lagendijk, “Beta factor in a random laser,” Phys. Rev. E 65, 047602 (2002).
[Crossref]

Phys. Rev. Lett. (7)

A. Piccardi, A. Alberucci, and G. Assanto, “Self-turning self-confined light beams in guest-host media,” Phys. Rev. Lett. 104, 213904 (2010).
[Crossref] [PubMed]

I. Burgess, M. Peccianti, G. Assanto, and R. Morandotti, “Accessible light bullets via synergetic nonlinearities,” Phys. Rev. Lett. 102, 203903 (2009).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref] [PubMed]

S. Gottardo, S. Cavalieri, O. Yaroshchuk, and D. S. Wiersma, “Quasi-two-dimensional diffusive random laser action,” Phys. Rev. Lett. 93, 263901 (2004).
[Crossref]

N. Bachelard, J. Andreasen, S. Gigan, and P. Sebbah, “Taming random lasers through active spatial control of the pump,” Phys. Rev. Lett. 109, 033903 (2012).
[Crossref] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835 (1968).

Waves Random Media (1)

H. Cao, “Lasing in random media,” Waves Random Media 13 (3), R1–R39 (2003).
[Crossref]

Other (2)

P. G. DeGennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, 1993).

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of the planar NLC sample. (b) Launch geometries in the principal plane yz, with A1 and A2 the amplitudes of the visible pump beam and the near-infrared solitary beam, respectively. (c) Acquired photographs of fluorescence emitted e-wave photons with-out nematicon (top), near-infrared nematicon (center), emitted e-wave light in the presence of a co-polarized nematicon (bottom). The near-infrared was filtered out in the last case.

Fig. 2
Fig. 2

(a) Typical examples of normalized spectra below lasing threshold, for an input pump beam polarized along x and energy E = 0.6μJ, without (black line) and with (red line) a collinear 6mW nematicon. (b) Same as in (a) but above threshold at a pump energyE = 1μJ.

Fig. 3
Fig. 3

(a)-(d)-(g) Input/output random lasing characteristics and (b)-(e)-(h) emission spectrum full-widths at half-maximum (FWHM) versus pump energy/pulse; (c)-(f)-(i) Emission spectra versus wavelength at the used pump energies. (a-c) Results for the interaction between RL and a PNIR = 2mW nematicon (red symbols and line) compared to the case without nematicon (black symbols and line): the soliton waveguide marginally affects RL emission. (d-f) Same as (a-c), but for PNIR = 6mW: the NIR-induced confinement enhances RL, with a higher gain accompanied by spectral narrowing. (g-i) Same as (a-c), for PNIR = 14mW: the spectra further narrow down and a kink appears in the input/output characteristic (g). Narrower profiles in (c)-(f)-(i) correspond to increasing pump energies.

Fig. 4
Fig. 4

Input/output random laser characteristics for various soliton powers, with the corresponding β-factors calculated at E = 1μJ and indicated in the legend. Neither the energy threshold nor the kink location change with nematicon power. From bottom to top the curves correspond to PNIR = 0, 2, 6, 10, 12, 14, 16, 18mW, respectively.

Fig. 5
Fig. 5

Soliton assisted RL enhancement. (a) Emission spectra for nematicon powers from PNIR = 0mW (broadest) to PNIR = 18mW (narrowest) and (b) corresponding FWHM (circles) and peak emission intensity (squares) versus soliton power PNIR, for a pump energy E = 0.66μJ below threshold. (c-d) As in (a-b) but for E = 1μJ, above threshold. (e-f) As in (a-b) or E = 1.53μJ, above the kink in Fig. 4.

Metrics