Abstract

We demonstrate resonance optical trapping of individual dye-doped polystyrene particles with blue- and red-detuned lasers whose energy are higher and lower compared to electronic transition of the dye molecules, respectively. Through the measurement on how long individual particles are trapped at the focus, we here show that immobilization time of dye-doped particles becomes longer than that of bare ones. We directly confirm that the immobilization time of dye-doped particles trapped by the blue-detuned laser becomes longer than that by the red-detuned one. These findings are well interpreted by our previous theoretical proposal based on nonlinear optical response under intense laser field. It is discussed that the present result is an important step toward efficient and selective manipulation of molecules, quantum dots, nanoparticles, and various nanomaterials based on their quantum mechanical properties.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength dependence of optical tweezer trapping forces on dye-doped polystyrene microspheres

M. J. Kendrick, D. H. McIntyre, and O. Ostroverkhova
J. Opt. Soc. Am. B 26(11) 2189-2198 (2009)

Four-wave mixing microscopy of nanostructures

Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun Raghunathan, and Eric O. Potma
Adv. Opt. Photon. 3(1) 1-52 (2011)

Optical vortex trap for resonant confinement of metal nanoparticles

Maria Dienerowitz, Michael Mazilu, Peter J. Reece, Thomas F. Krauss, and Kishan Dholakia
Opt. Express 16(7) 4991-4999 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  3. N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  4. T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
    [Crossref]
  5. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref] [PubMed]
  6. T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
    [Crossref] [PubMed]
  7. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
    [Crossref] [PubMed]
  8. L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
    [Crossref]
  9. A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
    [Crossref] [PubMed]
  10. Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
    [Crossref]
  11. A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
    [Crossref]
  12. A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
    [Crossref]
  13. T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
    [Crossref]
  14. M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
    [Crossref]
  15. G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
    [Crossref]
  16. H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
    [Crossref] [PubMed]
  17. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
    [Crossref]
  18. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [Crossref] [PubMed]
  19. M. J. Kendrick, D. H. McIntyre, and O. Ostroverkhova, “Wavelength dependence of optical tweezer trapping forces on dye-doped polystyrene microspheres,” J. Opt. Soc. Am. B 26(11), 2189–2198 (2009).
    [Crossref]
  20. T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
    [Crossref]
  21. M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).
  22. R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41(12), 2318–2327 (2002).
    [Crossref] [PubMed]
  23. T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
    [Crossref] [PubMed]
  24. T. Iida and H. Ishihara, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B 77(24), 245319 (2008).
    [Crossref]
  25. C. S. Adams and E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21(1), 1–79 (1997).
    [Crossref]
  26. T. Kudo and H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109(8), 087402 (2012).
    [Crossref] [PubMed]
  27. T. Kudo and H. Ishihara, “Resonance optical manipulation of nano-objects based on nonlinear optical response,” Phys. Chem. Chem. Phys. 15(35), 14595–14610 (2013).
    [Crossref] [PubMed]
  28. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).
  29. T. Kudo and H. Ishihara, “Two-color laser manipulation of single organic molecules based on nonlinear optical response,” Eur. Phys. J. B 86(3), 98 (2013).
    [Crossref]

2016 (1)

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

2014 (2)

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

2013 (3)

T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

T. Kudo and H. Ishihara, “Resonance optical manipulation of nano-objects based on nonlinear optical response,” Phys. Chem. Chem. Phys. 15(35), 14595–14610 (2013).
[Crossref] [PubMed]

T. Kudo and H. Ishihara, “Two-color laser manipulation of single organic molecules based on nonlinear optical response,” Eur. Phys. J. B 86(3), 98 (2013).
[Crossref]

2012 (4)

T. Kudo and H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109(8), 087402 (2012).
[Crossref] [PubMed]

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
[Crossref]

2010 (1)

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

2009 (2)

2008 (3)

T. Iida and H. Ishihara, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B 77(24), 245319 (2008).
[Crossref]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
[Crossref] [PubMed]

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

2007 (2)

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

2006 (2)

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
[Crossref]

2004 (1)

2003 (1)

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

2002 (2)

G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
[Crossref]

R. Agayan, F. Gittes, R. Kopelman, and C. F. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41(12), 2318–2327 (2002).
[Crossref] [PubMed]

1998 (1)

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

1997 (1)

C. S. Adams and E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21(1), 1–79 (1997).
[Crossref]

1986 (1)

Adams, C. S.

C. S. Adams and E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21(1), 1–79 (1997).
[Crossref]

Agate, B.

Agayan, R.

Ashkin, A.

Balasubramanian, S.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

Baldini, G.

G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
[Crossref]

Besga, B.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Bjorkholm, J. E.

Bradac, C.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Brennen, G.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Brown, C.

Browne, H.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

Chiang, W. Y.

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
[Crossref]

Chirico, G.

G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
[Crossref]

Chu, S.

De, A. K.

Dholakia, K.

Dickinson, R. M.

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Dienerowitz, M.

Dutta, A.

Dziedzic, J. M.

Fumagalli, C.

G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
[Crossref]

Furey, W. S.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gittes, F.

Gordon, R.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Goswami, D.

Grigorenko, N. A.

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Hosokawa, C.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
[Crossref]

Iida, T.

T. Iida and H. Ishihara, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B 77(24), 245319 (2008).
[Crossref]

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

Ishihara, H.

T. Kudo and H. Ishihara, “Two-color laser manipulation of single organic molecules based on nonlinear optical response,” Eur. Phys. J. B 86(3), 98 (2013).
[Crossref]

T. Kudo and H. Ishihara, “Resonance optical manipulation of nano-objects based on nonlinear optical response,” Phys. Chem. Chem. Phys. 15(35), 14595–14610 (2013).
[Crossref] [PubMed]

T. Kudo and H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109(8), 087402 (2012).
[Crossref] [PubMed]

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

T. Iida and H. Ishihara, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B 77(24), 245319 (2008).
[Crossref]

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

Ishikawa, A.

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
[Crossref]

Jiang, Y.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Johnsson, M.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Juan, M. L.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Kendrick, M. J.

Kitamura, N.

T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Kittiravechote, A.

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

Klenerman, D.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

Kopelman, R.

Krauss, T. F.

Kudo, T.

T. Kudo and H. Ishihara, “Two-color laser manipulation of single organic molecules based on nonlinear optical response,” Eur. Phys. J. B 86(3), 98 (2013).
[Crossref]

T. Kudo and H. Ishihara, “Resonance optical manipulation of nano-objects based on nonlinear optical response,” Phys. Chem. Chem. Phys. 15(35), 14595–14610 (2013).
[Crossref] [PubMed]

T. Kudo and H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109(8), 087402 (2012).
[Crossref] [PubMed]

Li, H.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

Liau, I.

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

Liu, T. H.

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Masuhara, H.

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
[Crossref]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
[Crossref]

Mazilu, M.

McIntyre, D. H.

Mizumoto, Y.

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Molina-Terriza, G.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Murakoshi, K.

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Narushima, T.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Okamoto, H.

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Osborne, M. A.

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

Ostroverkhova, O.

Pan, L.

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
[Crossref]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Reece, P. J.

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Riis, E.

C. S. Adams and E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21(1), 1–79 (1997).
[Crossref]

Roberts, W. N.

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Roy, D.

Schmidt, C. F.

Shoji, T.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Sibbett, W.

Takase, M.

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Tamai, N.

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
[Crossref]

Tsuboi, Y.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

Usman, A.

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
[Crossref]

Volz, T.

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Yoshikawa, H.

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, Y.

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zhou, D.

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

Appl. Opt. (2)

Eur. Phys. J. B (1)

T. Kudo and H. Ishihara, “Two-color laser manipulation of single organic molecules based on nonlinear optical response,” Eur. Phys. J. B 86(3), 98 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

H. Li, D. Zhou, H. Browne, and D. Klenerman, “Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy,” J. Am. Chem. Soc. 128(17), 5711–5717 (2006).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. Chem. (1)

A. Usman, W. Y. Chiang, and H. Masuhara, “Optical trapping and polarization-controlled scattering of dielectric spherical nanoparticles by femtosecond laser pulses,” J. Photochem. Photobiol. Chem. 234, 83–90 (2012).
[Crossref]

J. Phys. Chem. B (2)

M. A. Osborne, S. Balasubramanian, W. S. Furey, and D. Klenerman, “Optically biased diffusion of single molecules studied by confocal fluorescence microscopy,” J. Phys. Chem. B 102(17), 3160–3167 (1998).
[Crossref]

G. Chirico, C. Fumagalli, and G. Baldini, “Trapped Brownian motion in single- and two-photon excitation fluorescence correlation experiments,” J. Phys. Chem. B 106(10), 2508–2519 (2002).
[Crossref]

J. Phys. Chem. C (2)

T. H. Liu, W. Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

T. Shoji, N. Kitamura, and Y. Tsuboi, “Resonant Excitation effect on optical trapping of Myoglobin: The important role of a Heme cofactor,” J. Phys. Chem. C 117(20), 10691–10697 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (2)

T. Shoji, Y. Mizumoto, H. Ishihara, N. Kitamura, M. Takase, K. Murakoshi, and Y. Tsuboi, “Plasmon-based optical trapping of polymer nano-spheres as explored by confocal fluorescence microspectroscopy: a possible mechanism of a resonant excitation effect,” Jpn. J. Appl. Phys. 51(9R), 092001 (2012).
[Crossref]

C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Enhancement of biased diffusion of dye-doped nanoparticles by simultaneous irradiation with resonance and nonresonance laser beams,” Jpn. J. Appl. Phys. 45(16), L453–L456 (2006).
[Crossref]

Laser Phys. Lett. (1)

A. Kittiravechote, W. Y. Chiang, A. Usman, I. Liau, and H. Masuhara, “Enhanced optical confinement of dye-doped dielectric nanoparticles using a picosecond-pulsed near-infrared laser,” Laser Phys. Lett. 11(7), 076001 (2014).
[Crossref]

Nano Lett. (1)

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

N. A. Grigorenko, W. N. Roberts, R. M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Nat. Phys. (2)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Y. Jiang, T. Narushima, and H. Okamoto, “Nonlinear optical effects in trapping nanoparticles with femtosecond pulses,” Nat. Phys. 6(12), 1005–1009 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

T. Kudo and H. Ishihara, “Resonance optical manipulation of nano-objects based on nonlinear optical response,” Phys. Chem. Chem. Phys. 15(35), 14595–14610 (2013).
[Crossref] [PubMed]

Phys. Rev. B (2)

T. Iida and H. Ishihara, “Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: From microscopic to macroscopic descriptions,” Phys. Rev. B 77(24), 245319 (2008).
[Crossref]

L. Pan, A. Ishikawa, and N. Tamai, “Detection of optical trapping of CdTe quantum dots by two-photon-induced luminescence,” Phys. Rev. B 75(16), 161305 (2007).
[Crossref]

Phys. Rev. Lett. (2)

T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett. 90(5), 057403 (2003).
[Crossref] [PubMed]

T. Kudo and H. Ishihara, “Proposed nonlinear resonance laser technique for manipulating nanoparticles,” Phys. Rev. Lett. 109(8), 087402 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

C. S. Adams and E. Riis, “Laser cooling and trapping of neutral atoms,” Prog. Quantum Electron. 21(1), 1–79 (1997).
[Crossref]

Other (2)

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006).

M. L. Juan, C. Bradac, B. Besga, M. Johnsson, G. Brennen, G. Molina-Terriza, and T. Volz, “Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds,” Nat. Phys. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Setup for optical trapping of individual particles. An inset represents the sample chamber sandwiched by glass substrates and the laser is focused inside the solution. (b) Excitation (solid line) and emission (dashed line) spectra of dye-doped polystyrene particles in water solution. Vertical lines correspond to the wavelength of blue- (515 nm) and red- (532 nm) detuned lasers.

Fig. 2
Fig. 2

(a) Sketch of focused laser beam and position of the molecule for the radiation force calculation, and (b) its three level energy diagram with vibrational state.

Fig. 3
Fig. 3

Typical sequences of transmission images observed during the optical trapping. The sequential images are shown with 33 ms intervals. Horizontal dashed line denotes the vertical position of trapped particles. The red-detuned laser of 8 mW and bare particles are used. The length of black bar is 3 μm.

Fig. 4
Fig. 4

(a-c) Laser power dependence of histograms of the immobilization time with blue- and red-detuned lasers. (i,ii) Bare particle trapping with red- and blue-detuned lasers, respectively. (iii,iv) Dye-doped particle trapping with red- and blue-detuned lasers, respectively. Green dashed lines are the results from Brownian dynamics simulation under optical potential. The widths of each bar of the histogram are 1, 3, and 10 s, respectively for (a) to (c).

Fig. 5
Fig. 5

Laser power dependence of the effective immobilization time with (a) red- and (b) blue-detuned lasers.

Fig. 6
Fig. 6

(a) Photon energy dependence of radiation force exerted on dye molecules along the direction of light propagation (z-axis). The laser powers of orange, green, and pink lines are 10, 13, and 20 mW, respectively. (b) Spatial dependence of optical potential induced by blue- and red-detuned lasers. From the left to right figures, laser power for the calculation is 10, 13, and 20 mW, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r ( t + h ) = r ( t ) + m ξ v ( t ) { 1 exp ( ξ m h ) } + 1 ξ F r ( r ) { h m ξ ( 1 exp ( ξ m h ) ) } + Δ r B ,
v ( t + h ) = v ( t ) exp ( ξ m h ) + 1 ξ F r ( r ) ( 1 exp ( ξ m h ) ) + Δ v B ,
F r ( r ) = d U d r = 4 r w 2 U exp ( 2 | r | 2 w 2 ) .
Δ x = Δ y = Δ z = 0 ,
Δ x 2 = Δ y 2 = Δ z 2 = 2 k B T h ξ .
F ( ω ) = ( 1 2 ) Re { d r [ E ( r , ω ) * ] P ( r , ω ) } .

Metrics