Abstract

We report on the first electrically pumped continuous-wave (cw) InAs/GaAs quantum dot (QD) lasers monolithically grown on on-axis Si (001) substrates without any intermediate buffer layers. A 400 nm antiphase boundary (APB) free epitaxial GaAs film with a small root-mean-square (RMS) surface roughness of 0.86 nm was first deposited on a 300 mm standard industry-compatible on-axis Si (001) substrate by metal-organic chemical vapor deposition (MOCVD). The QD laser structure was then grown on this APB-free GaAs/Si (001) virtual substrate by molecular beam epitaxy (MBE). Room-temperature cw lasing at ~1.3 µm has been achieved with a threshold current density of 425 A/cm2 and single facet output power of 43 mW. Under pulsed operation, lasing operation up to 102 °C has been realized, with a threshold current density of 250 A/cm2 and single facet output power exceeding 130 mW at room temperature.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities

Andrew Lee, Qi Jiang, Mingchu Tang, Alwyn Seeds, and Huiyun Liu
Opt. Express 20(20) 22181-22187 (2012)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers

Mingchu Tang, Siming Chen, Jiang Wu, Qi Jiang, Vitaliy G. Dorogan, Mourad Benamara, Yuriy I. Mazur, Gregory J. Salamo, Alwyn Seeds, and Huiyun Liu
Opt. Express 22(10) 11528-11535 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  2. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
    [Crossref]
  3. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  4. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
    [Crossref] [PubMed]
  5. H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
    [Crossref] [PubMed]
  6. Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
    [Crossref] [PubMed]
  7. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
    [Crossref]
  8. E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
    [Crossref]
  9. J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
    [Crossref]
  10. D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
    [Crossref]
  11. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  12. M. Sugawara and M. Usami, “Quantum dot devices: handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
    [Crossref]
  13. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [Crossref] [PubMed]
  14. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  15. A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
    [Crossref] [PubMed]
  16. S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
    [Crossref]
  17. M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
    [Crossref]
  18. Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
    [Crossref] [PubMed]
  19. H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
    [Crossref]
  20. A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
    [Crossref]
  21. A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
    [Crossref]
  22. Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
    [Crossref]
  23. S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
    [Crossref]
  24. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  25. R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
    [Crossref]
  26. M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
    [Crossref]
  27. K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
    [Crossref]
  28. D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
    [Crossref]
  29. Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41(7), 1664–1667 (2016).
    [Crossref] [PubMed]
  30. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
    [Crossref] [PubMed]
  31. R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
    [Crossref]
  32. J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
    [Crossref] [PubMed]
  33. H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
    [Crossref]
  34. X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
    [Crossref]
  35. A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
    [Crossref]
  36. O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
    [Crossref]

2017 (1)

2016 (7)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41(7), 1664–1667 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

2015 (4)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

2014 (8)

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

2012 (1)

2011 (6)

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

2010 (1)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

2009 (3)

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices: handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

2007 (1)

2002 (1)

O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

1986 (1)

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

1985 (1)

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Akiyama, M.

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

Alcotte, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Arakawa, Y.

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Asghari, M.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Bao, X.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Baron, T.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bassani, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Beanland, R.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Benamara, M.

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Beyer, A.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Bogumilowicz, Y.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Bowers, E. J.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

Bowers, J. E.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41(7), 1664–1667 (2016).
[Crossref] [PubMed]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[Crossref] [PubMed]

Cerutti, L.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

Chang, E. Y.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Chang, H. H.

Chen, H.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Chen, S.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Cipro, R.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Cohen, O.

David, S.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Deppe, D.

O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

Deppe, D. G.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Dorogan, V. G.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Ducroquet, F.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Elliott, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Fang, A. W.

Fastenau, J. M.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Fischer, R.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Freisem, S.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Gossard, A. C.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41(7), 1664–1667 (2016).
[Crossref] [PubMed]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Henderson, T.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Herrick, R. W.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

Hogg, R.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Hu, E. L.

Huang, X.

Iwamoto, S.

Jeong, S. H.

Jhang, Y.-H.

Jiang, Q.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Jones, R.

Jung, D.

Jurczak, P.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

Kaminishi, K.

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

Kawarada, Y.

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

Kennedy, K.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

Klein, M. V.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Klem, J.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Krishnamoorthy, A. V.

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Kunert, B.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Kuo, C. I.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Kurahashi, T.

Lau, K. M.

Lee, A.

Lee, M.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Lee, M. L.

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

Liang, R.

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Liao, M.

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

Liebich, S.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Liu, A. W.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, A. Y.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

Y. Wan, Q. Li, A. Y. Liu, A. C. Gossard, J. E. Bowers, E. L. Hu, and K. M. Lau, “Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon,” Opt. Lett. 41(7), 1664–1667 (2016).
[Crossref] [PubMed]

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Liu, H.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Lubyshev, D.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Ma, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Martin, M.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Masselink, W. T.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Masuda, T.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Mazur, J. H.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Mazur, Y. I.

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

McGlinn, T. C.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Mochida, R.

Moeyaert, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Morito, K.

Morkoç, H.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Mowbray, D. J.

Nemeth, I.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Németh, I.

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Nguyen, H. Q.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Nishi, S.

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

Norman, J.

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42(2), 338–341 (2017).
[Crossref] [PubMed]

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Ohlmann, J.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Orchard, J. R.

Ozgur, G.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Pan, J.

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Paniccia, M. J.

Park, H.

Peters, J.

Petroff, P. M.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

Pin, J.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Pozzi, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

Qin, G.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Raday, O.

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Rodriguez, J. B.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Salamo, G. J.

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Sanchez, E.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Seeds, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Sekiguchi, S.

Shavritranuruk, K.

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

Shchekin, O.

O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

Shutts, S.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

Smowton, P. M.

Snyder, A.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

Song, Y.

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

Srinivasan, S.

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

Stolz, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Sugawara, M.

Sysak, M. N.

Takemasa, K.

Tanabe, K.

Tanaka, S.

Tanaka, Y.

Tang, M.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

Tillack, B.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Tournié, E.

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

Tutu, F.

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Ueda, O.

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

Ueda, T.

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices: handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

Volz, K.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

Wan, Y.

Wang, J.

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Wang, T.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

Wang, W.

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Wang, W. C.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Washburn, J.

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

Witte, W.

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

Wong, Y. Y.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Wu, J.

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Yamamoto, Y.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Ye, Z.

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

Yu, H. W.

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

Zhang, C.

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Zhou, X.

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

ACS Photonics (1)

S. Chen, M. Tang, Q. Jiang, J. Wu, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, P. Smowton, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si Substrate,” ACS Photonics 1(7), 638–642 (2014).
[Crossref]

APL Mater. (1)

R. Alcotte, M. Martin, J. Moeyaert, R. Cipro, S. David, F. Bassani, F. Ducroquet, Y. Bogumilowicz, E. Sanchez, Z. Ye, X. Bao, J. Pin, and T. Baron, “Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility,” APL Mater. 4(4), 046101 (2016).
[Crossref]

Appl. Phys. Lett. (4)

H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen, “Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 99(17), 171908 (2011).
[Crossref]

O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with T0= 161 K from 0 to 80 C,” Appl. Phys. Lett. 80(18), 3277–3279 (2002).
[Crossref]

A. Y. Liu, C. Zhang, J. Norman, A. Snyder, D. Lubyshev, J. M. Fastenau, A. W. Liu, A. C. Gossard, and J. E. Bowers, “High performance continuous wave 1.3 μm quantum dot lasers on silicon,” Appl. Phys. Lett. 104(4), 041104 (2014).
[Crossref] [PubMed]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Electron. Lett. (3)

D. G. Deppe, K. Shavritranuruk, G. Ozgur, H. Chen, and S. Freisem, “Quantum dot laser diode with low threshold and low internal loss,” Electron. Lett. 45(1), 54–56 (2009).
[Crossref]

S. Chen, M. Tang, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C,” Electron. Lett. 50(20), 1467–1468 (2014).
[Crossref]

D. Jung, Y. Song, M. Lee, T. Masuda, and X. Huang, “InGaAs/GaAs quantum well lasers grown on exact gap/Si (001),” Electron. Lett. 50(17), 1226–1227 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Y. Liu, R. W. Herrick, O. Ueda, P. M. Petroff, A. C. Gossard, and J. E. Bowers, “Bowers, “Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon,” IEEE J. Sel. Top. Quantum Electron. 21(6), 1900708 (2015).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, K. Kennedy, P. Jurczak, M. Liao, R. Beanland, A. Seeds, and H. Liu, “Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates,” IEEE J. Sel. Top. Quantum Electron. 22(6), 1900207 (2016).
[Crossref]

J. Appl. Phys. (2)

R. Fischer, W. T. Masselink, J. Klem, T. Henderson, T. C. McGlinn, M. V. Klein, H. Morkoç, J. H. Mazur, and J. Washburn, “Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy,” J. Appl. Phys. 58(1), 374–381 (1985).
[Crossref]

A. Beyer, I. Németh, S. Liebich, J. Ohlmann, W. Stolz, and K. Volz, “Influence of crystal polarity on crystal defects in GaP grown on exact Si (001),” J. Appl. Phys. 109(8), 083529 (2011).
[Crossref]

J. Cryst. Growth (2)

M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, and K. Kaminishi, “Growth of high quality GaAs layers on Si substrates by MOCVD,” J. Cryst. Growth 77(1–3), 490–497 (1986).
[Crossref]

K. Volz, A. Beyer, W. Witte, J. Ohlmann, I. Nemeth, B. Kunert, and W. Stolz, “GaP-nucleation on exact Si (0 0 1) substrates for III/V device integration,” J. Cryst. Growth 315(1), 37–47 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Wu, S. Chen, A. Seeds, and H. Liu, “Quantum dot optoelectronic devices: lasers, photodetectors and solar cells,” J. Phys. D Appl. Phys. 48(36), 363001 (2015).
[Crossref]

J. Semicond. (1)

X. Zhou, J. Pan, R. Liang, J. Wang, and W. Wang, “Epitaxy of GaAs thin film with low defect density and smooth surface on Si substrate,” J. Semicond. 35(7), 073002 (2014).
[Crossref]

Light Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light Sci. Appl. 4(11), e358 (2015).
[Crossref]

MRS Bull. (1)

E. Tournié, L. Cerutti, J. B. Rodriguez, H. Liu, J. Wu, and S. Chen, “Metamorphic III–V semiconductor lasers grown on silicon,” MRS Bull. 41(3), 223–233 (2016).
[Crossref]

Nat. Photonics (6)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: Energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

H. Liu, T. Wang, Q. Jiang, R. Hogg, F. Tutu, F. Pozzi, and A. Seeds, “Long-wavelength InAs/GaAs quantum dot laser diode monolithically grown on Ge substrate,” Nat. Photonics 5(7), 416–419 (2011).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices: handing the heat,” Nat. Photonics 3(1), 30–31 (2009).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, A. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (7)

J. R. Orchard, S. Shutts, A. Sobiesierski, J. Wu, M. Tang, S. Chen, Q. Jiang, S. Elliott, R. Beanland, H. Liu, P. M. Smowton, and D. J. Mowbray, “In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates,” Opt. Express 24(6), 6196–6202 (2016).
[Crossref] [PubMed]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Q. Jiang, M. Tang, S. Chen, J. Wu, A. Seeds, and H. Liu, “InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate,” Opt. Express 22(19), 23242–23248 (2014).
[Crossref] [PubMed]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express 20(27), 28057–28069 (2012).
[Crossref] [PubMed]

H. H. Chang, A. W. Fang, M. N. Sysak, H. Park, R. Jones, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “1310nm silicon evanescent laser,” Opt. Express 15(18), 11466–11471 (2007).
[Crossref] [PubMed]

Y.-H. Jhang, R. Mochida, K. Tanabe, K. Takemasa, M. Sugawara, S. Iwamoto, and Y. Arakawa, “Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C,” Opt. Express 24(16), 18428–18435 (2016).
[Crossref] [PubMed]

Opt. Lett. (2)

Photonics Res. (1)

A. Y. Liu, S. Srinivasan, J. Norman, A. C. Gossard, and E. J. Bowers, “Quantum dot lasers for silicon photonics [Invited],” Photonics Res. 3(5), B1–B9 (2015).
[Crossref]

Proc. IEEE (1)

Z. Mi, J. Yang, P. Bhattacharya, G. Qin, and Z. Ma, “High-performance quantum dot lasers and integrated optoelectronics on Si,” Proc. IEEE 97(7), 1239–1249 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The schematic diagram of the QD laser structure grown on the on-axis Si (001) substrate.

Fig. 2
Fig. 2

(a) 5 × 5 µm2 AFM image of a 400 nm GaAs film layer direct grown on the nominal Si (001) substrate. (b) PL comparison of 5-layer InAs/GaAs QD laser structure grown on GaAs/Si (001) to a reference sample grown on GaAs substrate at room temperature under the same pump conditions. (c)-(d) 1 × 1 µm2 AFM images of uncapped InAs/GaAs QDs grown on native GaAs and GaAs/Si (001) substrates, respectively.

Fig. 3
Fig. 3

(a) LIV characteristics comparison of InAs/GaAs QD laser grown on GaAs/Si (001) to the reference QD laser grown on native GaAs substrate at room temperature under cw operation. (b) LI comparison of InAs/GaAs QD laser grown on GaAs/Si (001) substrate under c.w and pulsed operation conditions at room temperature.

Fig. 4
Fig. 4

Emission spectra for InAs/GaAs QD laser on GaAs/Si (001) substrate at various injection current densities at room temperature. The inset shows the evolution of the FWHM as a function of injection current density.

Fig. 5
Fig. 5

Single facet light power verses current density for a InAs/GaAs QD laser grown on GaAs/Si (001) substrate at various heat sink temperatures under pulsed condition. The inset shows the natural logarithm of current density against temperature in the ranges of 16 – 102 °C. (b) Single facet output power versus current density for the same Si-based InAs/GaAs QD laser as a function of temperature under cw operation. The inset shows the LI curve for this Si-based InAs/GaAs QD laser at a heat sink temperature of 36 °C.

Metrics