Abstract

We investigate the interest of deep wet etching with HF/HNO3 or KOH solutions as a final step after polishing to improve fused silica optics laser damage resistance at the wavelength of 351 nm. This comparison is carried out on scratches engineered on high damage threshold polished fused silica optics. We evidence that both KOH and HF/HNO3 solutions are efficient to passivate scratches and thus improve their damage threshold up to the level of the polished surface. The effect of these wet etchings on surface roughness and aspect is also studied. We show that KOH solution exhibit better overall surface quality that HF/HNO3 solution in the tested conditions. Given the safety difficulties associated with the processing with HF, KOH solution appears as a pertinent alternative to HF deep wet etching.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Effects of combined process of reactive ion etching and dynamic chemical etching on UV laser damage resistance and surface quality of fused silica optics

Laixi Sun, Jin Huang, Ting Shao, Xin Ye, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 26(14) 18006-18018 (2018)

Post-processing of fused silica and its effects on damage resistance to nanosecond pulsed UV lasers

Hui Ye, Yaguo Li, Qinghua Zhang, Wei Wang, Zhigang Yuan, Jian Wang, and Qiao Xu
Appl. Opt. 55(11) 3017-3025 (2016)

Argon plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings

Kęstutis Juškevičius, Rytis Buzelis, Giedrius Abromavičius, Romanas Samuilovas, Saulė Abbas, Alexandr Belosludtsev, Ramutis Drazdys, and Simonas Kičas
Opt. Mater. Express 7(10) 3598-3607 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [Crossref] [PubMed]
  2. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [Crossref]
  3. A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
    [Crossref]
  4. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
    [Crossref]
  5. D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
    [Crossref]
  6. T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
    [Crossref]
  7. Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
    [Crossref]
  8. X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
    [Crossref]
  9. M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
    [Crossref]
  10. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref] [PubMed]
  11. M. Feit and A. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264 (2003).
  12. H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
    [Crossref]
  13. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  14. C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
    [Crossref]
  15. J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
    [Crossref]
  16. R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
    [Crossref]
  17. L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
    [Crossref]
  18. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
    [Crossref]
  19. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  20. X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
    [Crossref]
  21. H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).
  22. S. Tso and J. Pask, “Reaction of glasses with hydrofluoric acid solution,” J. Am. Ceram. Soc. 65(7), 360–362 (1982).
    [Crossref]
  23. G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
    [Crossref]
  24. D. Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
    [Crossref]
  25. W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).
  26. D. Kendall and R. Shoultz, Handbook of Microlithography, Micromachining, and Microfabrication vol. 2 (P. Rai-Choudhury, 1997), p72.
  27. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).
  28. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49(30), 5736–5745 (2010).
    [Crossref] [PubMed]
  29. S. E. de système optiques SESO, “Procédé de polissage d’au moins une surface d’un pièce à base de silicium,” French Patent EP1066926A1 (2001).
  30. P. Belleville, S. Lambert, M. Pfiffer, and P. Cormont, “Procédé pour améliorer la tenue au flux laser d’un composant optique,” French Patent 1658944, (September 23, 2016).
  31. International Standard, Nos. 21254–1–21254–4 (2011).
  32. L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
    [Crossref] [PubMed]
  33. J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
    [Crossref]
  34. M. Pfiffer, J. L. Longuet, C. Labrugère, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, P. Cormont, and J. Neauport, “Characterization of the polishing-induced contamination of fused silica optics,” J. Am. Ceram. Soc., doc ID 14448 (published 15 September 2016, in press).
  35. J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

2016 (1)

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

2015 (7)

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
[Crossref]

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

2014 (3)

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

2013 (1)

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (2)

2009 (2)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

2007 (1)

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

2005 (1)

2003 (1)

M. Feit and A. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264 (2003).

2002 (1)

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

2001 (1)

2000 (1)

D. Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

1998 (4)

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

1993 (1)

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

1982 (1)

S. Tso and J. Pask, “Reaction of glasses with hydrofluoric acid solution,” J. Am. Ceram. Soc. 65(7), 360–362 (1982).
[Crossref]

Ambard, C.

Battersby, C. L.

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
[Crossref]

Bercegol, H.

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[Crossref] [PubMed]

Birolleau, J. C.

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Campbell, J.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Cao, Y.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Catrin, R.

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

Chase, L. L.

Chen, J.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Chen, X.

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

Cormont, P.

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49(30), 5736–5745 (2010).
[Crossref] [PubMed]

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Desjardin, R.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Destribats, J.

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Dylla-Spears, R.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Faux, D.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Feit, M.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

M. Feit and A. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264 (2003).

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Feng, G.

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

Fu, S.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Gao, W.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Gao, X.

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

Genin, F. Y.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Génin, F.

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Génin, F. Y.

Golini, D.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Grua, P.

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

Gyamfi, M.

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Han, L.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

Hebert, D.

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

Jensen, L.

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Jiang, X.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

Knotter, D.

D. Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
[Crossref]

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Lamaignere, L.

Lambert, S.

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Li, S.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Li, Y.

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

Liao, D.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

Liu, S.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Liu, Y.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Lu, P.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Mädebach, H.

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

Maunier, C.

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt. 49(30), 5736–5745 (2010).
[Crossref] [PubMed]

Menapace, J.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Miller, P.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

Morreeuw, J. P.

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

Mrohs, M.

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Neauport, J.

Nichols, M.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Parham, T.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Pask, J.

S. Tso and J. Pask, “Reaction of glasses with hydrofluoric acid solution,” J. Am. Ceram. Soc. 65(7), 360–362 (1982).
[Crossref]

Penetrante, B.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Peng, W.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Peterson, J.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Pilon, F.

Pintault, B.

Pistor, T. V.

Raether, R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Rao, H.

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

Riddle, R.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Ristau, D.

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Rondeau, O.

Rubenchik, A.

M. Feit and A. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264 (2003).

Rubenchik, A. M.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

Salleo, A.

F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
[Crossref] [PubMed]

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Shao, J.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
[Crossref]

Shen, N.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Shouhuan, Z.

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

Slomba, A.

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

Spierings, G. A. C. M.

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

Steele, R.

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Steele, W.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Stolz, C.

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Su, R.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Suratwala, T.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Tang, C.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

Tang, L.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Taroux, D.

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

Thomas, I.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Tso, S.

S. Tso and J. Pask, “Reaction of glasses with hydrofluoric acid solution,” J. Am. Ceram. Soc. 65(7), 360–362 (1982).
[Crossref]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wang, C.

C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
[Crossref]

Wang, J.

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

Wang, L.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Wang, W.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Wang, Z.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Wei, C.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Wong, L.

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

Xie, R.

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

Xu, J.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Xu, M.

C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
[Crossref]

Xu, Q.

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

Xu, X.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Yang, C.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Yang, J.

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

Yang, M.

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Yang, W.

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

Ye, H.

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

Yoshiyama, J.

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

Yuan, Z.

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

Zhai, L.

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

Zhang, C.

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
[Crossref]

Zhang, Z.

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys., A Mater. Sci. Process. (1)

W. Wang, P. Lu, L. Han, C. Zhang, C. Yang, R. Su, and J. Chen, “Diffusion behavior of ammonium group and its interaction mechanisms with intrinsic defects in fused silica,” Appl. Phys., A Mater. Sci. Process. 929, 7 (2016).

Ceram. Int. (1)

D. Liao, X. Chen, C. Tang, R. Xie, and Z. Zhang, “Characteristics of hydrolyzed layer and contamination on fused silica induced during polishing,” Ceram. Int. 40(3), 4479–4483 (2014).
[Crossref]

J. Am. Ceram. Soc. (3)

T. Suratwala, W. Steele, L. Wong, M. Feit, P. Miller, R. Dylla-Spears, N. Shen, and R. Desjardin, “Chemistry and formation of the Beilby layer during polishing of fused silica glass,” J. Am. Ceram. Soc. 98(8), 2395–2402 (2015).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

S. Tso and J. Pask, “Reaction of glasses with hydrofluoric acid solution,” J. Am. Ceram. Soc. 65(7), 360–362 (1982).
[Crossref]

J. Am. Chem. Soc. (1)

D. Knotter, “Etching mechanism of vitreous silicon dioxide in HF-based solutions,” J. Am. Chem. Soc. 122(18), 4345–4351 (2000).
[Crossref]

J. Mater. Sci. (1)

G. A. C. M. Spierings, “Wet chemical etching of silicate glasses in hydrofluoric acid based solutions,” J. Mater. Sci. 28(23), 6261–6273 (1993).
[Crossref]

J. Non-Cryst. Solids (2)

L. Wong, T. Suratwala, M. D. Feit, P. E. Miller, and R. Steele, “The effect of HF/NH4F etching on the morphology of surface fractures on fused silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distribution during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. 113, 11560–11566 (2009).

Opt. Eng. (3)

R. Catrin, J. Neauport, D. Taroux, P. Cormont, C. Maunier, and S. Lambert, “Magnetorheological finishing for removing surface and subsurface defects of fused silica optics,” Opt. Eng. 53(9), 092010 (2014).
[Crossref]

Z. Wang, L. Wang, W. Peng, Y. Cao, J. Yang, L. Tang, and S. Li, “Origin and distribution of redeposition layer in polished fused silica,” Opt. Eng. 54(8), 085102 (2015).
[Crossref]

X. Gao, G. Feng, L. Zhai, and Z. Shouhuan, “Effect of subsurface impurities of fused silica on laser-induced damage probability,” Opt. Eng. 53(2), 026101 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (11)

J. Menapace, B. Penetrante, D. Golini, A. Slomba, P. E. Miller, T. Parham, M. Nichols, and J. Peterson, “Combined advanced finishing and UV-laser conditioning for producing UV-damage-resistant fused silica optics,” Proc. SPIE 4679, 56–68 (2002).
[Crossref]

C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1998).
[Crossref]

X. Jiang, Y. Liu, H. Rao, and S. Fu, “Improve the laser damage resistance of fused silica by wet surface cleaning and optimized HF etch process,” Proc. SPIE 8786, 87860Q (2013).
[Crossref]

H. Ye, Y. Li, Z. Yuan, J. Wang, Q. Xu, and W. Yang, “Improving UV laser damage threshold of fused silica optics by wet chemical etching technique,” Proc. SPIE 9532, 953221 (2015).

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

A. Salleo, F. Génin, J. Yoshiyama, C. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998).
[Crossref]

M. Feit and A. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264 (2003).

H. Bercegol, P. Grua, D. Hebert, and J. P. Morreeuw, “Progress in the understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[Crossref]

M. D. Feit, J. Campbell, D. Faux, F. Y. Genin, M. R. Kozlowski, A. M. Rubenchik, R. Riddle, A. Salleo, and J. Yoshiyama, “Modeling of laser-induced surface cracks in silica at 355-nm,” Proc. SPIE 3244, 350–355 (1998).
[Crossref]

J. Wang, Y. Li, Z. Yuan, H. Ye, R. Xie, X. Chen, and Q. Xu, “Producing fused silica optics with high UV-damage resistance to nanosecond pulsed lasers,” Proc. SPIE 9532, 95320H (2015).
[Crossref]

J. Xu, X. Xu, C. Wei, W. Gao, M. Yang, J. Shao, and S. Liu, “The effect of deep HF etching on the surface quality and figure of fused silica optics,” Proc. SPIE 9575, 95750P (2015).

Rev. Sci. Instrum. (1)

L. Jensen, M. Mrohs, M. Gyamfi, H. Mädebach, and D. Ristau, “Higher certainty of the laser-induced damage threshold test with a redistributing data treatment,” Rev. Sci. Instrum. 86(10), 103106 (2015).
[Crossref] [PubMed]

Sci. China Phys. Mech. Astron. (1)

C. Zhang, M. Xu, and C. Wang, “Light intensification effect of trailing indent crack in fused silica subsurface,” Sci. China Phys. Mech. Astron. 58(3), 1–6 (2015).
[Crossref]

Other (5)

D. Kendall and R. Shoultz, Handbook of Microlithography, Micromachining, and Microfabrication vol. 2 (P. Rai-Choudhury, 1997), p72.

M. Pfiffer, J. L. Longuet, C. Labrugère, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, P. Cormont, and J. Neauport, “Characterization of the polishing-induced contamination of fused silica optics,” J. Am. Ceram. Soc., doc ID 14448 (published 15 September 2016, in press).

S. E. de système optiques SESO, “Procédé de polissage d’au moins une surface d’un pièce à base de silicium,” French Patent EP1066926A1 (2001).

P. Belleville, S. Lambert, M. Pfiffer, and P. Cormont, “Procédé pour améliorer la tenue au flux laser d’un composant optique,” French Patent 1658944, (September 23, 2016).

International Standard, Nos. 21254–1–21254–4 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Preparation of the samples for surface characterizations
Fig. 2
Fig. 2 Scratched samples preparation
Fig. 3
Fig. 3 Etching system used for the hydrofluoric solution (sample A2 and sample B2)
Fig. 4
Fig. 4 Etching system for the KOH solution (Sample A3 and sample B3)
Fig. 5
Fig. 5 DMS observations before and after deep etching of the whole surface of 50 mm diameter samples (Samples A2 and A3). Identical lighting and detection conditions. Bright spots in the center and on the top are fiducials.
Fig. 6
Fig. 6 AFM characterizations and roughness measurements (Samples A1, A2, and A3)
Fig. 7
Fig. 7 Surface profiles obtained from the AFM measurements on the surfaces etched with HF/HNO3 solution or KOH solution and on the polished surface without etching
Fig. 8
Fig. 8 Carbon high resolution XPS spectra obtained after cleaning on a sample etched with a HF/HNO3 solution (Sample A2) and on a sample etched with a KOH solution (Sample A3)
Fig. 9
Fig. 9 DMS observations of scratched samples after polishing (left), Beilby layer removal (center) and deep etching (right). Bright spots in the center and on the top of the samples are indents which have been deliberately made to be used as fiducials. Bright points randomly distributed at the surface after polishing are due to a low quality of the cleaning performed after polishing.
Fig. 10
Fig. 10 Optical microscope observations of a scratch after 2µm etching (top) and a 12 µm deep etching (bottom)
Fig. 11
Fig. 11 Laser damage probability versus laser fluence at 355 nm and 3 ns for the scratched and etched samples (B1: red squares – reference, B2: green triangles – HF/HNO3 etching, B3: blue diamonds – KOH etching).

Tables (3)

Tables Icon

Table 1 RMS roughness measurements (nm) on polished surface before and after deep etching.

Tables Icon

Table 2 XPS atomic quantification on etched surfaces. Measurements were done after etching and cleaning.

Tables Icon

Table 3 Scratches widths measurements (Batches B2 and B3).

Metrics