Abstract

We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterisation of signal enhancements achieved when utilizing a photon diode in deep Raman spectroscopy of tissue

Martha Z. Vardaki, Pavel Matousek, and Nicholas Stone
Biomed. Opt. Express 7(6) 2130-2141 (2016)

Influence of tissue absorption and scattering on the depth dependent sensitivity of Raman fiber probes investigated by Monte Carlo simulations

Carina Reble, Ingo Gersonde, Chad A. Lieber, and Jürgen Helfmann
Biomed. Opt. Express 2(3) 520-533 (2011)

Snapshot depth sensitive Raman spectroscopy in layered tissues

Wei Liu, Yi Hong Ong, Xiao Jun Yu, Jian Ju, Clint Michael Perlaki, Lin Bo Liu, and Quan Liu
Opt. Express 24(25) 28312-28325 (2016)

References

  • View by:
  • |
  • |
  • |

  1. R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
    [Crossref] [PubMed]
  2. P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 7–19 (2013).
    [Crossref] [PubMed]
  3. Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [Crossref]
  4. A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
    [Crossref] [PubMed]
  5. C. R. Flach and D. J. Moore, “Infrared and Raman imaging spectroscopy of ex vivo skin,” Int. J. Cosmet. Sci. 35(2), 125–135 (2013).
    [Crossref] [PubMed]
  6. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
    [Crossref] [PubMed]
  7. M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
    [Crossref] [PubMed]
  8. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
    [Crossref] [PubMed]
  9. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
    [Crossref] [PubMed]
  10. P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
    [Crossref] [PubMed]
  11. B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
    [Crossref] [PubMed]
  12. K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
    [Crossref] [PubMed]
  13. K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
    [Crossref]
  14. K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
    [Crossref] [PubMed]
  15. I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
    [Crossref] [PubMed]
  16. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
    [Crossref] [PubMed]
  17. P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
    [Crossref] [PubMed]
  18. P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
    [Crossref] [PubMed]
  19. B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
    [Crossref] [PubMed]
  20. K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).
  21. C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79(4), 1696–1701 (2007).
    [Crossref] [PubMed]
  22. K. Buckley and P. Matousek, “Non-invasive detection of concealed liquid and powder explosives using spatially offset Raman spectroscopy,” in Infrared and Raman Spectroscopy in Forensic Science, J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, eds (Wiley, 2012).
  23. J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
    [Crossref]
  24. C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
    [Crossref]
  25. S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
    [Crossref] [PubMed]
  26. F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
    [Crossref] [PubMed]
  27. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46(4), 707–711 (1992).
    [Crossref]
  28. M. Elias, “Relationship between the size distribution of mineral pigments and color saturation,” Appl. Opt. 50(16), 2464–2473 (2011).
    [Crossref] [PubMed]
  29. G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63(6), 604–610 (2009).
    [Crossref] [PubMed]
  30. P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
    [Crossref] [PubMed]
  31. F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
    [Crossref] [PubMed]
  32. B. H. Hokr and V. V. Yakovlev, “Raman signal enhancement via elastic light scattering,” Opt. Express 21(10), 11757–11762 (2013).
    [Crossref] [PubMed]
  33. P. Matousek, “Inverse spatially offset Raman spectroscopy for deep noninvasive probing of turbid media,” Appl. Spectrosc. 60(11), 1341–1347 (2006).
    [Crossref] [PubMed]
  34. I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
    [Crossref] [PubMed]
  35. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
    [Crossref] [PubMed]
  36. A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
    [Crossref] [PubMed]
  37. S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
    [Crossref]
  38. S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).
  39. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4587–4599 (1997).
    [Crossref] [PubMed]
  40. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]

2016 (6)

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
[Crossref] [PubMed]

K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
[Crossref] [PubMed]

2015 (4)

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

2014 (2)

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

2013 (3)

C. R. Flach and D. J. Moore, “Infrared and Raman imaging spectroscopy of ex vivo skin,” Int. J. Cosmet. Sci. 35(2), 125–135 (2013).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 7–19 (2013).
[Crossref] [PubMed]

B. H. Hokr and V. V. Yakovlev, “Raman signal enhancement via elastic light scattering,” Opt. Express 21(10), 11757–11762 (2013).
[Crossref] [PubMed]

2012 (3)

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
[Crossref]

2011 (3)

M. Elias, “Relationship between the size distribution of mineral pigments and color saturation,” Appl. Opt. 50(16), 2464–2473 (2011).
[Crossref] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

2010 (1)

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

2009 (4)

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

G. Latour, M. Elias, and J. M. Frigerio, “Determination of the absorption and scattering coefficients of pigments: application to the identification of the components of pigment mixtures,” Appl. Spectrosc. 63(6), 604–610 (2009).
[Crossref] [PubMed]

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

2007 (3)

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79(4), 1696–1701 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2004 (1)

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

2003 (2)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
[Crossref] [PubMed]

2002 (1)

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

1997 (1)

1994 (1)

1992 (1)

Abramczyk, H.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Ariese, F.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Awonusi, A.

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

Bailo, E.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Bargigia, I.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Begun, D.

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

Binzoni, T.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
[Crossref] [PubMed]

Birch, H. L.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

Brozek-Pluska, B.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Buckley, K.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

Buijs, J. B.

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Caspers, P. J.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Cavalieri, S.

Chao, K.

J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
[Crossref]

Cherepy, N. J.

Chikoidze, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Clark, I. P.

Colombo, C.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Conti, C.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

Contini, D.

Cubeddu, R.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Dalla Mora, A.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

de Wilde, W.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Del Bianco, S.

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Dieing, T.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Draper, E.

Draper, E. R. C.

Durduran, T.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Dvorák, P.

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Elias, M.

Eliasson, C.

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79(4), 1696–1701 (2007).
[Crossref] [PubMed]

Esmonde-White, F. W. L.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

Everall, N.

Farina, A.

F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

Farzam, P.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Feng, T. C.

Finney, W. F.

Flach, C. R.

C. R. Flach and D. J. Moore, “Infrared and Raman imaging spectroscopy of ex vivo skin,” Int. J. Cosmet. Sci. 35(2), 125–135 (2013).
[Crossref] [PubMed]

Frigerio, J. M.

Gardner, B.

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
[Crossref] [PubMed]

Ghosh, N.

K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
[Crossref]

Giambattistelli, E.

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Gikas, P. D.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

Goldstein, S. A.

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

Goodship, A.

Goodship, A. E.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

Gooijer, C.

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Gupta, P. K.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

Haskell, R. C.

Hight Walker, A. R.

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Hokr, B. H.

Iping Petterson, I. E.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Ispizua, U.

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Keen, R.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

Keller, M. D.

Kerns, J. G.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

Khan, K. M.

K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
[Crossref]

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

Kim, M. S.

J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
[Crossref]

Klapetek, P.

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Konugolu Venkata Sekar, S.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Kordek, R.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Latour, G.

Lindner, C.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Majumder, S. K.

K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
[Crossref]

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

Mandair, G. S.

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

Martelli, F.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
[Crossref] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref] [PubMed]

Martinenghi, E.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Mathies, R. A.

Matousek, P.

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
[Crossref] [PubMed]

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 7–19 (2013).
[Crossref] [PubMed]

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79(4), 1696–1701 (2007).
[Crossref] [PubMed]

P. Matousek, “Inverse spatially offset Raman spectroscopy for deep noninvasive probing of turbid media,” Appl. Spectrosc. 60(11), 1341–1347 (2006).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

McAdams, M. S.

Mélot, M.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

Moore, D. J.

C. R. Flach and D. J. Moore, “Infrared and Raman imaging spectroscopy of ex vivo skin,” Int. J. Cosmet. Sci. 35(2), 125–135 (2013).
[Crossref] [PubMed]

Mora, M.

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Morris, M. D.

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

P. Matousek, M. D. Morris, N. Everall, I. P. Clark, M. Towrie, E. Draper, A. Goodship, and A. W. Parker, “Numerical simulations of subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(12), 1485–1492 (2005).
[Crossref] [PubMed]

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Musial, J.

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

Okagbare, P. I.

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

Pagliazzi, M.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Parker, A. W.

Petry, R.

R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
[Crossref] [PubMed]

Pifferi, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

F. Martelli, T. Binzoni, S. K. Sekar, A. Farina, S. Cavalieri, and A. Pifferi, “Time-domain Raman analytical forward solvers,” Opt. Express 24(18), 20382–20399 (2016).
[Crossref] [PubMed]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Popp, J.

R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
[Crossref] [PubMed]

Pudney, P. D. A.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

Puppels, G. J.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Qin, J.

J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
[Crossref]

Rae, A.

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Realini, M.

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

Rehman, I. U.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Roy, D.

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Schmitt, M.

R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
[Crossref] [PubMed]

Sekar, S. K.

Shreve, A. P.

Spinelli, L.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

Squarcia, M.

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

Stone, N.

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 7–19 (2013).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

Stosch, R.

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Svaasand, L. O.

Taroni, P.

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Tecklenburg, M.

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

Torricelli, A.

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

Towrie, M.

Tromberg, B. J.

Tsay, T. T.

Van Der Pol, A.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

Vinton, J.

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

Williamson, A. M.

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

Yakovlev, V. V.

Zaccanti, G.

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Comparison with Monte Carlo results,” Appl. Opt. 36(19), 4587–4599 (1997).
[Crossref] [PubMed]

Anal. Chem. (2)

B. Gardner, P. Matousek, and N. Stone, “Temperature spatially offset Raman spectroscopy (T-SORS): subsurface chemically specific measurement of temperature in turbid media using anti-stokes spatially offset Raman spectroscopy,” Anal. Chem. 88(1), 832–837 (2016).
[Crossref] [PubMed]

C. Eliasson and P. Matousek, “Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman spectroscopy,” Anal. Chem. 79(4), 1696–1701 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (4)

P. Matousek, C. Conti, M. Realini, and C. Colombo, “Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials,” Analyst (Lond.) 141(3), 731–739 (2016).
[Crossref] [PubMed]

B. Brozek-Pluska, J. Musial, R. Kordek, E. Bailo, T. Dieing, and H. Abramczyk, “Raman spectroscopy and imaging: applications in human breast cancer diagnosis,” Analyst (Lond.) 137(16), 3773–3780 (2012).
[Crossref] [PubMed]

I. E. Iping Petterson, F. W. L. Esmonde-White, W. de Wilde, M. D. Morris, and F. Ariese, “Tissue phantoms to compare spatial and temporal offset modes of deep Raman spectroscopy,” Analyst (Lond.) 140(7), 2504–2512 (2015).
[Crossref] [PubMed]

I. E. Iping Petterson, P. Dvořák, J. B. Buijs, C. Gooijer, and F. Ariese, “Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers,” Analyst (Lond.) 135(12), 3255–3259 (2010).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[Crossref]

Biophys. J. (1)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

ChemPhysChem (1)

R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem 4(1), 14–30 (2003).
[Crossref] [PubMed]

Clin. Orthop. Relat. Res. (1)

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

Eur. Conf. Biomed. Opt. (1)

S. Konugolu Venkata Sekar, A. Farina, E. Martinenghi, A. Dalla Mora, P. Taroni, A. Pifferi, T. Durduran, M. Pagliazzi, C. Lindner, P. Farzam, M. Mora, M. Squarcia, and U. Ispizua, “Broadband time-resolved diffuse optical spectrometer for clinical diagnostics: characterization and in-vivo measurements in the 600-1350 nm spectral range,” Eur. Conf. Biomed. Opt. 9538, 95380R (2015).

IBMS boneKEy (1)

K. Buckley, J. G. Kerns, P. D. Gikas, H. L. Birch, J. Vinton, R. Keen, A. W. Parker, P. Matousek, and A. E. Goodship, “Measurement of abnormal bone composition in vivo using noninvasive Raman spectroscopy,” IBMS boneKEy 11(602), 1–3 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

S. Konugolu Venkata Sekar, A. Dalla Mora, I. Bargigia, E. Martinenghi, C. Lindner, P. Farzam, M. Pagliazzi, T. Durduran, P. Taroni, A. Pifferi, and A. Farina, “Broadband (600-1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use,” IEEE J. Sel. Top. Quantum Electron. 22(3), 7349112 (2016).
[Crossref]

Int. J. Cosmet. Sci. (1)

C. R. Flach and D. J. Moore, “Infrared and Raman imaging spectroscopy of ex vivo skin,” Int. J. Cosmet. Sci. 35(2), 125–135 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14(5), 054030 (2009).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, A. Bassi, E. Chikoidze, E. Giambattistelli, and R. Cubeddu, “Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies,” J. Biomed. Opt. 9(3), 474–480 (2004).
[Crossref] [PubMed]

P. I. Okagbare, D. Begun, M. Tecklenburg, A. Awonusi, S. A. Goldstein, and M. D. Morris, “Noninvasive Raman spectroscopy of rat tibiae: approach to in vivo assessment of bone quality,” J. Biomed. Opt. 17(9), 090502 (2012).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” J. Biomed. Opt. 12(2), 024008 (2007).
[Crossref] [PubMed]

J. Biophotonics (2)

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

P. Matousek and N. Stone, “Recent advances in the development of Raman spectroscopy for deep non-invasive medical diagnosis,” J. Biophotonics 6(1), 7–19 (2013).
[Crossref] [PubMed]

J. Control. Release (1)

M. Mélot, P. D. A. Pudney, A. M. Williamson, P. J. Caspers, A. Van Der Pol, and G. J. Puppels, “Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy,” J. Control. Release 138(1), 32–39 (2009).
[Crossref] [PubMed]

J. Opt. (1)

K. M. Khan, N. Ghosh, and S. K. Majumder, “Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples,” J. Opt. 18(9), 095301 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Pharm. Biomed. Anal. (1)

K. Buckley and P. Matousek, “Recent advances in the application of transmission Raman spectroscopy to pharmaceutical analysis,” J. Pharm. Biomed. Anal. 55(4), 645–652 (2011).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

C. Conti, C. Colombo, M. Realini, and P. Matousek, “Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS),” J. Raman Spectrosc. 46(5), 476–482 (2015).
[Crossref]

Methods (1)

A. Rae, R. Stosch, P. Klapetek, A. R. Hight Walker, and D. Roy, “State of the art Raman techniques for biological applications,” Methods 68(2), 338–347 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. Del Bianco, F. Martelli, and G. Zaccanti, “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47(23), 4131–4144 (2002).
[Crossref] [PubMed]

Postharvest Biol. Technol. (1)

J. Qin, K. Chao, and M. S. Kim, “Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy,” Postharvest Biol. Technol. 71, 21–31 (2012).
[Crossref]

Sci. Rep. (1)

F. Martelli, T. Binzoni, A. Pifferi, L. Spinelli, A. Farina, and A. Torricelli, “There’s plenty of light at the bottom: statistics of photon penetration depth in random media,” Sci. Rep. 6, 27057 (2016).
[Crossref] [PubMed]

Other (1)

K. Buckley and P. Matousek, “Non-invasive detection of concealed liquid and powder explosives using spatially offset Raman spectroscopy,” in Infrared and Raman Spectroscopy in Forensic Science, J. M. Chalmers, H. G. M. Edwards, and M. D. Hargreaves, eds (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The principles of FORS (a), SORS (b) and hybrid FORS-SORS (c) are shown.

Fig. 2
Fig. 2

Experimental setup for SORS and FORS measurements. The Raman probe is demarcated with a red dashed line.

Fig. 3
Fig. 3

Pictorial description and key parameters of the measurement geometry.

Fig. 4
Fig. 4

Absorption (black triangles) and reduced scattering spectrum (blue squares) of the top PDMS layer (a) and of bottom marble layer (b). High contrast is seen in the optical properties of the top layer between 700 and 808 nm. The excitation wavelength E and range R of Raman lines of interest are also reported.

Fig. 5
Fig. 5

SORS spectra collected at different source-detector separations (1, 4.5, 10 mm) with excitation source at 780 nm. The asterisk sign denotes the Raman peaks used for evaluating the enhancement factor. All spectra are vertical shifted for clarity.

Fig. 6
Fig. 6

FORS spectra collected at different excitation source wavelengths (700, 745, 780, 808 nm) with a fixed source-detector separation (d = 4.5 mm). The asterisk sign denotes the Raman peaks used for evaluating the enhancement factor. All spectra are vertical shifted for clarity.

Fig. 7
Fig. 7

Hybrid FORS-SORS spectra. The top layer peak at 1411 cm-1 almost disappears at 808 nm. The asterisk sign denotes the Raman peaks used for evaluating the enhancement factor. All spectra are vertical shifted for clarity.

Tables (2)

Tables Icon

Table 1 Comparison between SORS and FORS in term of their main features.

Tables Icon

Table 2 Enhancement factor of FORS and SORS measurements at multiple source-detector separations (d) and excitations. Bold values in the table represent the enhancement factor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η S O R S = I ( d ) B o t t o m I ( d ) T o p I ( d 0 ) B o t t o m I ( d 0 ) T o p
η F O R S = I ( λ ) B o t t o m I ( λ ) T o p I ( λ 0 ) B o t t o m I ( λ 0 ) T o p

Metrics