Abstract

We report on a Holmium micro-laser passively Q-switched by a semiconductor saturable absorber (SSA), for the first time to the best of our knowledge. It is based on a 1 at.% Ho:YAG ceramic with good energy storage capability and several commercial transmission-type SSAs with 0.24% modulation depth. Under in-band pumping by a Tm fiber laser at 1910 nm, the Ho micro-laser generated 450 mW at 2089 nm with 37% slope efficiency. Stable 89 ns, 3.2 μJ pulses are achieved at a repetition rate of 141 kHz. Further shortening of the laser pulses is feasible with the increase of the modulation depth of the SSA while power scaling may lead to Q-switching at MHz-range repetition rates.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Passive Q-switching of microchip lasers based on Ho:YAG ceramics

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov
Appl. Opt. 55(18) 4877-4887 (2016)

Passive Q-switching of a Tm,Ho:KLu(WO4)2 microchip laser by a Cr:ZnS saturable absorber

J. M. Serres, P. Loiko, X. Mateos, V. Jambunathan, A. S. Yasukevich, K. V. Yumashev, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz
Appl. Opt. 55(14) 3757-3763 (2016)

MoS2 saturable absorber for passive Q-switching of Yb and Tm microchip lasers

Josep Maria Serres, Pavel Loiko, Xavier Mateos, Haohai Yu, Huaijin Zhang, Yanxue Chen, Valentin Petrov, Uwe Griebner, Konstantin Yumashev, Magdalena Aguiló, and Francesc Díaz
Opt. Mater. Express 6(10) 3262-3273 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  2. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  3. W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
    [Crossref] [PubMed]
  4. T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
    [Crossref]
  5. H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
    [Crossref]
  6. H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
    [Crossref] [PubMed]
  7. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
    [Crossref] [PubMed]
  8. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  9. B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
    [Crossref] [PubMed]
  10. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
    [Crossref] [PubMed]
  11. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  12. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
    [Crossref] [PubMed]
  13. G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
    [Crossref]
  14. F. Di Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30(24), 3299–3301 (2005).
    [Crossref] [PubMed]
  15. Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
    [Crossref]
  16. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  17. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
    [Crossref]
  18. M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
    [Crossref]
  19. J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
    [Crossref] [PubMed]
  20. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
    [Crossref]
  21. J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).
  22. J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
    [Crossref]
  23. B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
    [Crossref]
  24. R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
    [Crossref] [PubMed]
  25. T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
    [Crossref]
  26. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
    [Crossref]

2016 (4)

2015 (5)

2014 (2)

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

2013 (1)

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

2012 (4)

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

2011 (1)

2010 (1)

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

2007 (1)

2006 (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

2005 (1)

2001 (1)

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

1997 (1)

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1994 (1)

Agnesi, A.

Aguiló, M.

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Ba, X. W.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Barnes, N. P.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Braun, B.

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Brooks, C. D.

Chen, H.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Cho, W. B.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Choi, S. Y.

Cui, Z.

Dai, T.

Di, J.

Di Teodoro, F.

Díaz, F.

Dill, C.

Dong, J.

Duan, X.

Feng, X. Q.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Gao, W. L.

Gaponenko, M.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Graf, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Grew, G. W.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Griebner, U.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Guina, M.

Guo, J. K.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Harder, C.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Härkönen, A.

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Huber, G.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Ikesue, A.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Jiang, B. X.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kärtner, F. X.

Keller, U.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kim, K.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Kim, M. H.

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kuleshov, N.

Kullberg, M. P.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Lan, R.

Lee, S.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Li, J.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
[Crossref] [PubMed]

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Liu, B. L.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, J.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, Q.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Liu, W. B.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Loiko, P.

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Luo, D. W.

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Lv, P.

Ma, J.

Malyarevich, A.

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Mateos, X.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Mix, E.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Moser, M.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

Onushchenko, A.

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Pan, Y.

Pan, Y. B.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Paschotta, R.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Petrov, V.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Qian, L. J.

Qin, X. P.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Qin, Z.

Rotermund, F.

Schmidt, A.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Serres, J. M.

Shen, D.

Shen, D. Y.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Shen, Y.

Shirakawa, A.

Spühler, G. J.

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

Steinmeyer, G.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Südmeyer, T.

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

Suomalainen, S.

Tang, D.

Tang, D. Y.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 μm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

Ueda, K.

Walsh, B. M.

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Wang, J. Y.

Wang, Y.

Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, and V. Petrov, “SESAM mode-locked Tm:CALGO laser at 2 µm,” Opt. Mater. Express 6(1), 131–136 (2016).
[Crossref]

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Xie, G.

Xie, G. Q.

Xie, T. F.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Xu, X.

Yagi, H.

Yanagitani, T.

Yang, H.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Yang, X.

Yang, X. F.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Yao, B.

Yasukevich, A.

Yeom, D.-I.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Yim, J. H.

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Yoshida, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Yu, H. H.

Yuan, J.

Yuan, P.

Yumashev, K.

R. Lan, P. Loiko, X. Mateos, Y. Wang, J. Li, Y. Pan, S. Y. Choi, M. H. Kim, F. Rotermund, A. Yasukevich, K. Yumashev, U. Griebner, and V. Petrov, “Passive Q-switching of microchip lasers based on Ho:YAG ceramics,” Appl. Opt. 55(18), 4877–4887 (2016).
[Crossref] [PubMed]

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

J. M. Serres, P. Loiko, X. Mateos, K. Yumashev, U. Griebner, V. Petrov, M. Aguiló, and F. Díaz, “Tm:KLu(WO4)2 microchip laser Q-switched by a graphene-based saturable absorber,” Opt. Express 23(11), 14108–14113 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

Zayhowski, J. J.

Zeng, Y. P.

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

Zhang, G.

Zhang, H. J.

Zhang, J.

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Zhang, Q. T.

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

Zhang, W. X.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Zhao, T.

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

Zhou, J.

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

Adv. Funct. Mater. (1)

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, A. Schmidt, G. Steinmeyer, U. Griebner, V. Petrov, D.-I. Yeom, K. Kim, and F. Rotermund, “Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers,” Adv. Funct. Mater. 20(12), 1937–1943 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (2)

T. Zhao, Y. Wang, H. Chen, and D. Y. Shen, “Graphene passively Q-switched Ho:YAG ceramic laser,” Appl. Phys. B 116(4), 947–950 (2014).
[Crossref]

G. J. Spühler, R. Paschotta, M. P. Kullberg, M. Graf, M. Moser, E. Mix, G. Huber, C. Harder, and U. Keller, “A passively Q-switched Yb:YAG microchip laser,” Appl. Phys. B 72(3), 285–287 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Gaponenko, N. Kuleshov, and T. Südmeyer, “Passively Q-switched thulium microchip laser,” IEEE Photonics Technol. Lett. 28(2), 147–150 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Malyarevich, A. Onushchenko, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Ho:KLu(WO4)2 microchip laser Q-switched by a PbS quantum-dot-doped glass,” IEEE Photonics Technol. Lett. 27(17), 1795–1798 (2015).
[Crossref]

J. Am. Ceram. Soc. (3)

J. Li, J. Zhou, Y. B. Pan, W. B. Liu, W. X. Zhang, J. K. Guo, H. Chen, D. Y. Shen, X. F. Yang, and T. Zhao, “Solid-state reactive sintering and optical characteristics of transparent Er:YAG laser ceramics,” J. Am. Ceram. Soc. 95(3), 1029–1032 (2012).

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

H. Yang, J. Zhang, X. P. Qin, D. W. Luo, J. Ma, D. Y. Tang, H. Chen, D. Y. Shen, and Q. T. Zhang, “Polycrystalline Ho:YAG transparent ceramics for eye-safe solid state laser applications,” J. Am. Ceram. Soc. 95(1), 52–55 (2012).
[Crossref]

J. Eur. Ceram. Soc. (1)

J. Li, J. Liu, B. L. Liu, W. B. Liu, Y. P. Zeng, X. W. Ba, T. F. Xie, B. X. Jiang, Q. Liu, Y. B. Pan, X. Q. Feng, and J. K. Guo, “Influence of heat treatment of powder mixture on the microstructure and optical transmission of Nd:YAG transparent ceramics,” J. Eur. Ceram. Soc. 34(10), 2497–2507 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

B. M. Walsh, G. W. Grew, and N. P. Barnes, “Energy levels and intensity parameters of Ho3+ ions in Y3Al5O12 and Lu3Al5O12,” J. Phys. Chem. Solids 67(7), 1567–1582 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (8)

F. Di Teodoro and C. D. Brooks, “Multistage Yb-doped fiber amplifier generating megawatt peak-power, subnanosecond pulses,” Opt. Lett. 30(24), 3299–3301 (2005).
[Crossref] [PubMed]

H. Chen, D. Shen, J. Zhang, H. Yang, D. Tang, T. Zhao, and X. Yang, “In-band pumped highly efficient Ho:YAG ceramic laser with 21 W output power at 2097 nm,” Opt. Lett. 36(9), 1575–1577 (2011).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
[Crossref] [PubMed]

B. Yao, J. Yuan, J. Li, T. Dai, X. Duan, Y. Shen, Z. Cui, and Y. Pan, “High-power Cr2+:ZnS saturable absorber passively Q-switched Ho:YAG ceramic laser and its application to pumping of a mid-IR OPO,” Opt. Lett. 40(3), 348–351 (2015).
[Crossref] [PubMed]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, A. Yasukevich, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “Subnanosecond Tm:KLuW microchip laser Q-switched by a Cr:ZnS saturable absorber,” Opt. Lett. 40(22), 5220–5223 (2015).
[Crossref] [PubMed]

W. L. Gao, J. Ma, G. Q. Xie, J. Zhang, D. W. Luo, H. Yang, D. Y. Tang, J. Ma, P. Yuan, and L. J. Qian, “Highly efficient 2 μm Tm:YAG ceramic laser,” Opt. Lett. 37(6), 1076–1078 (2012).
[Crossref] [PubMed]

B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, “56-ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22(6), 381–383 (1997).
[Crossref] [PubMed]

Opt. Mater. (1)

T. Zhao, H. Chen, D. Y. Shen, Y. Wang, X. F. Yang, J. Zhang, H. Yang, and D. Y. Tang, “Effects of Ho3+-doping concentration on the performances of resonantly pumped Ho:YAG ceramic lasers,” Opt. Mater. 35(4), 712–714 (2013).
[Crossref]

Opt. Mater. Express (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Spectroscopy of 1 at.% Ho:YAG ceramics: (a) absorption, σabs, and stimulated-emission, σSE, cross-section spectra and (b) gain, σg = βσSE – (1–β)σabs, cross-section spectra, β is the inversion ratio, arrows denote pump (a) and laser (b) wavelengths for the Ho:YAG ceramic laser; inset of (a) – photograph of the studied sample; (c) Low intensity absorption spectrum of the transmission-type semiconductor saturable absorber (SSA), inset: image of the studied SSA mounted on a Cu-holder.
Fig. 2
Fig. 2 CW and SSA passively Q-switched Ho:YAG ceramic laser: (a) input-output dependences, η - slope efficiency, τSA – specified recovery time of the SSAs: #1 (7 ps), #2 (13 ps) or #3 (21 ps); (b) typical laser emission spectra, Pabs = 1.59 W, the spectrum in the PQS regime corresponds to the SSA with τSA = 7 ps.
Fig. 3
Fig. 3 SSA passively Q-switched Ho:YAG ceramic laser: pulse duration Δτ (FWHM) (a), pulse repetition frequency (PRF) (b), pulse energy Eout = Pout/PRF (c) and peak power Ppeak = Eoutτ (d), τSA – recovery time of the SSAs.
Fig. 4
Fig. 4 Passively Q-switched Ho:YAG ceramic laser using the SSA with τSA = 13 ps: oscilloscope traces of the single pulses at various Pabs (a) and the corresponding pulse train for Pabs = 1.59 W (b).

Tables (1)

Tables Icon

Table 1 Comparison of Output Characteristics of the Ho:YAG Ceramic Lasers Passively Q-switched by “Fast” SAs Reported so Far

Metrics