Abstract

The Gaussian noise model is used to estimate the performance of three digital nonlinearity compensation (NLC) algorithms in C-band, long-haul, optical fiber transmission, when the span length and NLC bandwidth are independently varied. The algorithms are receiver-side digital backpropagation (DBP), transmitter-side DBP (digital precompensation), and Split NLC (an equal division of DBP between transmitter and receiver). For transmission over 100×100 km spans, the model predicts a 0.2 dB increase in SNR when applying Split NLC (versus DBP) to a single 32 GBd channel (from 0.4 dB to 0.6 dB), monotonically increasing with NLC bandwidth up to 1.6 dB for full-field NLC. The underlying assumptions of this model and the practical considerations for implementation of Split NLC are discussed. This work demonstrates, theoretically, that, regardless of the transmission scenario, it is always beneficial to divide NLC between transmitter and receiver, and identifies the transmission regimes where Split NLC is particularly advantageous.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
On the limits of digital back-propagation in the presence of transceiver noise

Lidia Galdino, Daniel Semrau, Domaniç Lavery, Gabriel Saavedra, Cristian B. Czegledi, Erik Agrell, Robert I. Killey, and Polina Bayvel
Opt. Express 25(4) 4564-4578 (2017)

Digital backpropagation accounting for polarization-mode dispersion

Cristian B. Czegledi, Gabriele Liga, Domaniç Lavery, Magnus Karlsson, Erik Agrell, Seb J. Savory, and Polina Bayvel
Opt. Express 25(3) 1903-1915 (2017)

Modulation format dependence of digital nonlinearity compensation performance in optical fibre communication systems

Tianhua Xu, Nikita A. Shevchenko, Domaniç Lavery, Daniel Semrau, Gabriele Liga, Alex Alvarado, Robert I. Killey, and Polina Bayvel
Opt. Express 25(4) 3311-3326 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
    [Crossref] [PubMed]
  2. E. Temprana, E. Myslivets, L. Liu, V. Ataie, A. Wiberg, B. Kuo, N. Alic, and S. Radic, “Two-fold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers,” Opt. Express 23, 20774–20783 (2015).
    [Crossref] [PubMed]
  3. D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
    [Crossref]
  4. R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253—1256 (2016).
    [Crossref]
  5. A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015)
    [Crossref] [PubMed]
  6. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [Crossref]
  7. G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
    [Crossref]
  8. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics J. 2(5), 816–832 (2010).
    [Crossref]
  9. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightwave Technol. 32(4), 694–721 (2014).
    [Crossref]
  10. A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,“ Opt. Express 22(13), 16335–16362 (2014).
    [Crossref] [PubMed]
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution,” J. Lightwave Technol. 33(2), 459–473 (2015).
    [Crossref]
  12. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013)
    [Crossref] [PubMed]
  13. M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012).
    [Crossref]
  14. A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.
  15. T. Tanimura, M. Nölle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensation with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
    [Crossref] [PubMed]
  16. J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).
  17. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  18. S. J. Savory, “Optimum electronic dispersion compensation strategies for nonlinear transmission,” Electron. Let. 42(7), 407–408 (2006).
    [Crossref]
  19. T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
    [Crossref] [PubMed]
  20. C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.
  21. G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
    [Crossref] [PubMed]
  22. D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
    [Crossref]
  23. R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.
  24. R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
    [Crossref] [PubMed]
  25. E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.
  26. N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.
  27. C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Proc. of Optical Fiber Communication Conference (OFC) (2015), paper Th4D.4.
  28. E. Temprana, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Transmitter-side digital back propagation with optical injection-locked frequency referenced carriers,” J. Lightwave Technol. 34(15), 3544–3549 (2016).
    [Crossref]
  29. E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.
  30. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
    [Crossref] [PubMed]
  31. W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
    [Crossref] [PubMed]
  32. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
    [Crossref] [PubMed]
  33. G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.
  34. L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.
  35. M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
    [Crossref]
  36. F. Aflatouni and H. Hashemi, “Light source independent linewidth reduction of lasers,” in Proc. of Optical Fiber Communication Conference (OFC) (2012), paper OW1G.6.
    [Crossref]
  37. M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
    [Crossref] [PubMed]
  38. F. N. Hauske, M. Kuschnerov, B. Spinnler, and B. Lankl, “Optical performance monitoring in digital coherent receivers,” J. Lightwave Technol. 27(16), 3623–3631 (2009).
    [Crossref]
  39. K. Goroshko, H. Louchet, and A. Richter, “Overcoming performance limitations of digital back propagation due to polarization mode dispersion,” in Proc. of International Conference on Transparent Optical Networks (ICTON) (2016), paper Mo.B1.4.

2016 (5)

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253—1256 (2016).
[Crossref]

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

E. Temprana, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Transmitter-side digital back propagation with optical injection-locked frequency referenced carriers,” J. Lightwave Technol. 34(15), 3544–3549 (2016).
[Crossref]

2015 (5)

2014 (3)

2013 (1)

2012 (3)

2010 (4)

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics J. 2(5), 816–832 (2010).
[Crossref]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[Crossref]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2007 (1)

2006 (1)

S. J. Savory, “Optimum electronic dispersion compensation strategies for nonlinear transmission,” Electron. Let. 42(7), 407–408 (2006).
[Crossref]

Aflatouni, F.

F. Aflatouni and H. Hashemi, “Light source independent linewidth reduction of lasers,” in Proc. of Optical Fiber Communication Conference (OFC) (2012), paper OW1G.6.
[Crossref]

Agrell, E.

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

Al Kahteeb, M. A. Z.

Alic, N.

Al-Khateeb, M. A. Z.

A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015)
[Crossref] [PubMed]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Alvarado, A.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Ataie, V.

E. Temprana, E. Myslivets, L. Liu, V. Ataie, A. Wiberg, B. Kuo, N. Alic, and S. Radic, “Two-fold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers,” Opt. Express 23, 20774–20783 (2015).
[Crossref] [PubMed]

E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.

Bayvel, P.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

Behrens, C.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

Berrettini, G.

M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
[Crossref]

Bosco, G.

Carena, A.

Cartledge, J. C.

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

Chandrasekhar, S.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Proc. of Optical Fiber Communication Conference (OFC) (2015), paper Th4D.4.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Chen, X.

Curri, V.

Czegledi, C. B.

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

Dangui, V.

E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.

Dar, R.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253—1256 (2016).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013)
[Crossref] [PubMed]

Delbue, R.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Ellis, A. D.

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015)
[Crossref] [PubMed]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Fatadin, I.

Feder, M.

Ferreira, F. M.

Fischer, J. K.

Fontaine, N. K.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Forestieri, E.

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012).
[Crossref]

Forghieri, F.

Galdino, L.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Gao, G.

Goroshko, K.

K. Goroshko, H. Louchet, and A. Richter, “Overcoming performance limitations of digital back propagation due to polarization mode dispersion,” in Proc. of International Conference on Transparent Optical Networks (ICTON) (2016), paper Mo.B1.4.

Guiomar, F. P.

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

Hashemi, H.

F. Aflatouni and H. Hashemi, “Light source independent linewidth reduction of lasers,” in Proc. of Optical Fiber Communication Conference (OFC) (2012), paper OW1G.6.
[Crossref]

Hauske, F. N.

Hellerbrand, S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

Ho, K. P.

Huang, Y. K.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

Ip, E.

Ives, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Jiang, Y.

Kahn, J. M.

Karlsson, M.

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

Killey, R.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Killey, R. I.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

Kschischang, F. R.

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

Kuo, B.

Kuo, B. P.-P.

E. Temprana, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Transmitter-side digital back propagation with optical injection-locked frequency referenced carriers,” J. Lightwave Technol. 34(15), 3544–3549 (2016).
[Crossref]

E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.

Kuschnerov, M.

Lankl, B.

Lavery, D

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

Lavery, D.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

Le, S. T.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics J. 2(5), 816–832 (2010).
[Crossref]

Liga, G.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

Lin, C.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Proc. of Optical Fiber Communication Conference (OFC) (2015), paper Th4D.4.

Lingle, R.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

Liu, L.

Liu, X.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Louchet, H.

K. Goroshko, H. Louchet, and A. Richter, “Overcoming performance limitations of digital back propagation due to polarization mode dispersion,” in Proc. of International Conference on Transparent Optical Networks (ICTON) (2016), paper Mo.B1.4.

Lowery, A. J.

Maher, R.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Makovejis, S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

McCarthy, M. E.

Mecozzi, A.

Meloni, G.

M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
[Crossref]

Millar, D.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

Millar, D. S.

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

Myslivets, E.

Nölle, M.

Parsons, K.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

Peckham, D.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

Poggiolini, P.

Poti, L.

M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
[Crossref]

Pupalaikis, P.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Radic, S.

Randel, S.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Richter, A.

K. Goroshko, H. Louchet, and A. Richter, “Overcoming performance limitations of digital back propagation due to polarization mode dispersion,” in Proc. of International Conference on Transparent Optical Networks (ICTON) (2016), paper Mo.B1.4.

Ryf, R.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Saavedra, G.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Sato, M.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

Savory, S.

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

Savory, S. J.

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[Crossref] [PubMed]

S. J. Savory, “Optimum electronic dispersion compensation strategies for nonlinear transmission,” Electron. Let. 42(7), 407–408 (2006).
[Crossref]

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

Schubert, C.

Secondini, M.

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012).
[Crossref]

M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
[Crossref]

Shao, Y.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

Shi, K.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

Shieh, W.

Shtaif, M.

Spinnler, B.

Sureka, A.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Sygletos, S.

Tanimura, T.

Temprana, E.

Thomsen, B. C.

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

Turitsyn, S. K.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Vusirikala, V.

E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.

Wiberg, A.

Winzer, P.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

Winzer, P. J.

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253—1256 (2016).
[Crossref]

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Proc. of Optical Fiber Communication Conference (OFC) (2015), paper Th4D.4.

Xu, T.

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Yaman, F.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics J. 2(5), 816–832 (2010).
[Crossref]

Yankov, M. P.

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

Zhu, B.

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

Electron. Let. (1)

S. J. Savory, “Optimum electronic dispersion compensation strategies for nonlinear transmission,” Electron. Let. 42(7), 407–408 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Millar, S. Makovejis, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[Crossref]

IEEE Photonics J. (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photonics J. 2(5), 816–832 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M. Secondini and E. Forestieri, “Analytical fiber-optic channel model in the presence of cross-phase modulation,” IEEE Photonics Technol. Lett. 24(22), 2016–2019 (2012).
[Crossref]

D. Lavery, D. Ives, G. Liga, A. Alvarado, S. Savory, and P. Bayvel, “The benefit of split nonlinearity compensation for single channel optical fiber communications,” IEEE Photonics Technol. Lett. 28(17), 1803–1806 (2016).
[Crossref]

R. Dar and P. J. Winzer, “On the limits of digital back-propagation in fully loaded WDM systems,” IEEE Photonics Technol. Lett. 28(11), 1253—1256 (2016).
[Crossref]

J. Lightwave Technol. (6)

Opt. Express (11)

A. D. Ellis, M. E. McCarthy, M. A. Z. Al-Khateeb, and S. Sygletos, “Capacity limits of systems employing multiple optical phase conjugators,” Opt. Express 23(16), 20381–20393 (2015)
[Crossref] [PubMed]

E. Temprana, E. Myslivets, L. Liu, V. Ataie, A. Wiberg, B. Kuo, N. Alic, and S. Radic, “Two-fold transmission reach enhancement enabled by transmitter-side digital backpropagation and optical frequency comb-derived information carriers,” Opt. Express 23, 20774–20783 (2015).
[Crossref] [PubMed]

M. E. McCarthy, M. A. Z. Al Kahteeb, F. M. Ferreira, and A. D. Ellis, “PMD tolerant nonlinear compensation using in-line phase conjugation,” Opt. Express 24(4), 3385–3392 (2016).
[Crossref] [PubMed]

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,“ Opt. Express 22(13), 16335–16362 (2014).
[Crossref] [PubMed]

G. Liga, T. Xu, A. Alvarado, R. I. Killey, and P. Bayvel, “On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission,” Opt. Express 22(24), 30053–30062 (2014).
[Crossref]

A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12965–12970 (2007).
[Crossref] [PubMed]

W. Shieh and K. P. Ho, “Equalization-enhanced phase noise for coherent detection systems using electronic digital signal processing,” Opt. Express 16(20), 15718–15727 (2008).
[Crossref] [PubMed]

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express 18(15), 16273–16278 (2010).
[Crossref] [PubMed]

G. Gao, X. Chen, and W. Shieh, “Influence of PMD on fiber nonlinearity compensation using digital back propagation,” Opt. Express 20(13), 14406–14418 (2012).
[Crossref] [PubMed]

T. Tanimura, M. Nölle, J. K. Fischer, and C. Schubert, “Analytical results on back propagation nonlinear compensation with coherent detection,” Opt. Express 20(27), 28779–28785 (2012).
[Crossref] [PubMed]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013)
[Crossref] [PubMed]

Sci. Rep. (3)

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep. 6, 21278 (2016).
[Crossref] [PubMed]

T. Xu, G. Liga, D. Lavery, B. C. Thomsen, S. J. Savory, R. I. Killey, and P. Bayvel, “Equalization enhanced phase noise in Nyquist-spaced superchannel transmission systems using multi-channel digital back-propagation,” Sci. Rep. 5, 13990 (2015).
[Crossref] [PubMed]

R. Maher, T. Xu, L. Galdino, M. Sato, A. Alvarado, K. Shi, S. J. Savory, B. C. Thomsen, R. I. Killey, and P. Bayvel, “Spectrally shaped DP-16QAM super-channel transmission with multi-channel digital back-propagation,” Sci. Rep. 5, 8214 (2015).
[Crossref] [PubMed]

Other (13)

E. Ip, Y. K. Huang, Y. Shao, B. Zhu, D. Peckham, and R. Lingle, “3 × 112-Gb/s DP-16QAM Transmission over 3580 km of ULAF with interchannel nonlinearity compensation,” in IEEE Photonic Society (2011), paper WEE3.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. of European Conference on Optical Communication (ECOC) (2013), paper Mo.3.D.5.

C. Lin, S. Chandrasekhar, and P. J. Winzer, “Experimental study of the limits of digital nonlinearity compensation in DWDM systems,” in Proc. of Optical Fiber Communication Conference (OFC) (2015), paper Th4D.4.

E. Temprana, E. Myslivets, V. Ataie, B. P.-P. Kuo, N. Alic, V. Vusirikala, V. Dangui, and S. Radic, “Demonstration of coherent transmission reach tripling by frequency-referenced nonlinearity pre-compensation in EDFA-only SMF Link,” in Proc. of European Conference on Optical Communication (ECOC) (2016), pp. 376–378.

G. Liga, C. B. Czegledi, E. Agrell, R. I. Killey, and P. Bayvel, “Ultra-wideband nonlinearity compensation performance in the presence of PMD”, in Proc. of European Conference on Optical Communication (ECOC) (2016), paper P1.SC3.9.

L. Galdino, G. Liga, G. Saavedra, D. Ives, R. Maher, A. Alvarado, S. Savory, R. Killey, and P. Bayvel, “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. of European Conference on Optical Communication (ECOC) (2016), paper Th.2.C.5.

M. Secondini, G. Meloni, G. Berrettini, and L. Poti, “How to use a low-cost DFB local oscillator in ultra-long-haul uncompensated coherent systems,” in Proc. of European Conference on Optical Communication (ECOC) (2012), paper Th.2.C.5.
[Crossref]

F. Aflatouni and H. Hashemi, “Light source independent linewidth reduction of lasers,” in Proc. of Optical Fiber Communication Conference (OFC) (2012), paper OW1G.6.
[Crossref]

J. C. Cartledge, F. P. Guiomar, F. R. Kschischang, G. Liga, and M. P. Yankov, “Digital signal processing for fiber nonlinearities,” Opt. Express, in press (2017).

K. Goroshko, H. Louchet, and A. Richter, “Overcoming performance limitations of digital back propagation due to polarization mode dispersion,” in Proc. of International Conference on Transparent Optical Networks (ICTON) (2016), paper Mo.B1.4.

C. B. Czegledi, G. Liga, D Lavery, M. Karlsson, E. Agrell, S. J. Savory, and P. Bayvel, “Polarization-mode dispersion aware digital backpropagation,” in Proc. of European Conference on Optical Communication (ECOC, 2016), pp. 1–3.

R. Maher, D. Lavery, D. Millar, A. Alvarado, K. Parsons, R. Killey, and P. Bayvel, “Reach enhancement of 100% for a DP-64QAM super-channel using MC-DBP,” in Proc. of Optical Fiber Communication Conference, (2015), paper Th4D.5.

A. D. Ellis, S. T. Le, M. A. Z. Al-Khateeb, S. K. Turitsyn, G. Liga, D. Lavery, T. Xu, and P. Bayvel, “The impact of phase conjugation on the nonlinear-shannon limit: The difference between optical and electrical phase conjugation,” in IEEE Summer Topicals Meeting Series (IEEE, 2015), pp. 209–210.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Transmission models for digital nonlinearity compensation (NLC): (a) digital pre-compensation (DPC), (b) digital backpropagation (DBP) and (c) Split NLC. Note that (c) is a generalisation of (a) and (b), where it has previously been shown that the optimum configuration is NS_DPC = NSNS_DBP = ⌊NS/2⌋.
Fig. 2
Fig. 2 Numerical evaluation of (1) to establish additional SNR gain over receiver-side DBP for both DPC and Split NLC after (a) 1000 km and (b) 10000 km transmission.
Fig. 3
Fig. 3 The SNR improvement using different NLC algorithms, as in Fig. 2, when (a) compensating the full C-band simultaneously, and (b) compensating only a single channel from the C-band.
Fig. 4
Fig. 4 Split NLC performance at 10000 km for different span lengths and number of compensated channels.

Tables (1)

Tables Icon

Table 1 Summary of system parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SNR P N S P ASE + σ ss 2 + σ sn 2 ,
σ ss 2 = ( η ( B ) N s 1 + 1 η ( B NLC ) N s 1 + 2 ) P 3 ,
σ sn 2 = 3 ξ η ( B ) P 2 P ASE .
ξ = k = 1 N S _ DPC 1 k 1 + 1 + k = 1 N S _ DBP k 1 + 1 ,
1 SNR TOT = 1 SNR TR + 1 SNR ASE + 1 SNR NLI ,
σ EEPN 2 DB ( L pre f Sig , 3 dB + L post f LO , 3 dB ) ,

Metrics