Abstract

Traditional microwave photonic systems cannot implement frequency up-conversion with phase tunable capability, which plays an important role for phase array beamforming. Here, a method that can implement both upconversion and downconversion with a broadband full-degree phase-shift capability by constructing an optical path with a Hilbert transform function is presented. Owing to the Hilbert transform path, the dual-drive Mach-Zehnder modulator (DMZM) bias information, which initially influences the amplitudes of the output signals, are transferred to their phases. As a result, the phase-shift capability of the output radio frequencies (RFs) and intermediate frequencies (IFs) can be achieved by simply adjusting the bias voltage of the DMZM without using an optical filter. Experimental results demonstrate that a 360° phase shift can be achieved when the IF signal below 4-GHz and the RF signal between 8 and 16-GHz are converted into each other.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter

Wei Li, Wen Hui Sun, Wen Ting Wang, Li Xian Wang, Jian Guo Liu, and Ning Hua Zhu
Opt. Express 22(5) 5522-5527 (2014)

Anti-dispersion phase-tunable microwave mixer based on a dual-drive dual-parallel Mach-Zehnder modulator

Mutong Xie, Mingyang Zhao, Mingzheng Lei, Yongle Wu, Yuanan Liu, Xinlu Gao, and Shanguo Huang
Opt. Express 26(1) 454-462 (2018)

Photonic downconversion with tunable wideband phase shift

Tianwei Jiang, Song Yu, Ruihuan Wu, Dongsheng Wang, and Wanyi Gu
Opt. Lett. 41(11) 2640-2643 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
    [Crossref]
  2. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. V. R. Pagán, B. M. Haas, and T. E. Murphy, “Linearized electrooptic microwave downconversion using phase modulation and optical filtering,” Opt. Express 19(2), 883–895 (2011)
    [Crossref] [PubMed]
  5. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Light-wave Technol. 30(23), 3672–3678 (2012).
    [Crossref]
  6. A. Altaqui, E. H. W. Chan, and R. A. Minasian, “Microwave photonic mixer with high spurious-free dynamic range,” Appl. Opt. 53, 3687–3695 (2014).
    [Crossref] [PubMed]
  7. J. Liao, X. Zheng, S. Li, H. Zhang, and B. Zhou, “High-efficiency microwave photonic harmonic down-conversion with tunable and reconfigurable filtering,” Opt. Lett. 39(23), 6565–6568 (2014).
    [Crossref] [PubMed]
  8. T. Jiang, S. Yu, Q. Xie, J. Li, and W. Gu, “Photonic downconversion based on optical carrier bidirectional reusing in a phase modulator,” Opt. Lett. 39(17), 4990–4993 (2014).
    [Crossref] [PubMed]
  9. X. Wang, E. H. W. Chan, and R. A. Minasian, “All-optical photonic microwave phase shifter based on an optical filter with a nonlinear phase response,” J. Lightwave Technol. 31(20), 3323–3330 (2013).
    [Crossref]
  10. W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
    [Crossref] [PubMed]
  11. W. Li, N. Zhu, and L. Wang, “Photonic phase shifter based on wavelength dependence of brillouin frequency shift,” IEEE Photon. Technol. Lett. 23(14), 1013–1015 (2011).
    [Crossref]
  12. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplier,” Opt. Express 19(18), 17421–17426 (2011).
    [Crossref] [PubMed]
  13. V. R. Pagán and T. E. Murphy, “Electro-optic millimeter-wave harmonic downconversion and vector demodulation using cascaded phase modulation and optical filtering,” Opt. Lett. 40(11), 2481–2484 (2015).
    [Crossref] [PubMed]
  14. T. Jiang, S. Yu, R. Wu, D. Wang, and W. Gu, “Photonic downconversion with tunable wideband phase shift,” Opt. Lett. 41(11), 2640–2643 (2016).
    [Crossref] [PubMed]
  15. Y. Gao, A. Wen, Z. Tu, W. Zhang, and L. Lin, “Simultaneously photonic frequency downconversion, multichannel phase shifting, and IQ demodulation for wideband microwave signals,” Opt. Lett. 41(19), 4484–4487 (2016).
    [Crossref] [PubMed]
  16. S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
    [Crossref]
  17. P. S. Devgan, J. F. Diehl, V. J. Urick, C. E. Sunderman, and K. J. Williams, “Even-order harmonic cancellation for off quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs,” Opt. Express 17(11), 9028–9030 (2009).
    [Crossref] [PubMed]

2016 (2)

2015 (1)

2014 (4)

2013 (1)

2012 (1)

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Light-wave Technol. 30(23), 3672–3678 (2012).
[Crossref]

2011 (3)

2009 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2002 (1)

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

1996 (1)

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

1993 (1)

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

Altaqui, A.

Burns, W. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Capmany, J.

Chalfant, C. H.

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

Chan, E. H. W.

Chang, P. H.

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

Coward, J. F.

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

Devgan, P. S.

Diehl, J. F.

Dubovitsky, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Gao, Y.

Gasulla, I.

Gu, W.

Haas, B. M.

Jalali, B.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Jiang, T.

Li, J.

Li, S.

Li, W.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
[Crossref] [PubMed]

W. Li, N. Zhu, and L. Wang, “Photonic phase shifter based on wavelength dependence of brillouin frequency shift,” IEEE Photon. Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

Liao, J.

Lin, L.

Liu, J.

Lloret, J.

Minasian, R. A.

Murphy, T. E.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Orazi, R. J.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Pagán, V. R.

Pappert, S. A.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Sales, S.

Sancho, J.

Steier, W. H.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Sun, C. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

Sun, W.

Sunderman, C. E.

Tu, Z.

Urick, V. J.

Wang, D.

Wang, L.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
[Crossref] [PubMed]

W. Li, N. Zhu, and L. Wang, “Photonic phase shifter based on wavelength dependence of brillouin frequency shift,” IEEE Photon. Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

Wang, W.

Wang, X.

Wen, A.

Williams, K. J.

Wu, R.

Xie, Q.

Yee, T. K.

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

Yegnanarayanan, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Yu, S.

Zhang, H.

Zhang, W.

Zheng, X.

Zhou, B.

Zhu, N.

W. Li, W. Sun, W. Wang, L. Wang, J. Liu, and N. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
[Crossref] [PubMed]

W. Li, N. Zhu, and L. Wang, “Photonic phase shifter based on wavelength dependence of brillouin frequency shift,” IEEE Photon. Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (2)

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8(9), 1166–1168 (1996).
[Crossref]

W. Li, N. Zhu, and L. Wang, “Photonic phase shifter based on wavelength dependence of brillouin frequency shift,” IEEE Photon. Technol. Lett. 23(14), 1013–1015 (2011).
[Crossref]

J. Light-wave Technol. (1)

E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Light-wave Technol. 30(23), 3672–3678 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. F. Coward, T. K. Yee, C. H. Chalfant, and P. H. Chang, “A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications,” J. Lightwave Technol. 11(1), 2201–2205 (1993).
[Crossref]

X. Wang, E. H. W. Chan, and R. A. Minasian, “All-optical photonic microwave phase shifter based on an optical filter with a nonlinear phase response,” J. Lightwave Technol. 31(20), 3323–3330 (2013).
[Crossref]

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol. 20(5), 886–891 (2002).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Typical application of the proposed system on radio phase array beamforming (a) transmitter, (b) receiver. (VGA: variable gain amplifier, LNA: low noise amplifier).
Fig. 2
Fig. 2 Microwave photonic mixer with phase-shift function, (a) diagram of proposed system using polarization multiplexing, and (b) diagram of proposed system using wavelength multiplexing. EF: electrical filter.
Fig. 3
Fig. 3 Experimental block diagram of microwave photonic mixer with wideband phase shift (VNA: vector network analyzer).
Fig. 4
Fig. 4 (a)/(b) Optical spectrum of traditional path and Hilbert transfer path when θ 1 = π 2 , θ2 = 0.(c)/(d) Electrical spectrum of traditional path and Hilbert transfer path when θ 1 = π 2 , θ2 = 0. (e) Electrical spectrum when combing both paths. (f) Dynamic range performance of the proposed system. (IMD3: third order intermodulation distortion.)
Fig. 5
Fig. 5 Experimentally measured phase response of proposed system at different DC biases for (a) downconverted signal, (b) upconverted signal.
Fig. 6
Fig. 6 (a) Power responses of downconverted signal for different phase shifts, (b) power responses of upconverted signal for different phase shift, (c) phase shifts of downconverted signal when time is swept from 0 to 200s, and (d) phase shift of upconverted signal when the time is swept from 0 to 200s.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

u ( t 1 ) = P o 8 e j ω O t { e j β 1 c o s ( ω S t ) + e j [ β 2 c o s ( ω L O t + ϕ 1 ) + θ 1 ] } ,
u ( t 2 ) = P o 8 e j ω O t { e j β 1 c o s ( ω S t ) + e j [ β 2 c o s ( ω L O t + ϕ 2 ) + θ 2 ] } ,
[ u f ( t ) u s ( t ) ] = E 0 [ e j β 1 c o s ( ω s t ) + e j [ β 2 c o s ( ω L O t + ϕ 1 ) + θ 1 ] e j β 1 c o s ( ω s t ) + e j [ β 2 c o s ( ω L O t + ϕ 2 ) + θ 2 ] ] .
I = 1 4 P o R ( | u f ( t ) | 2 + | u s ( t ) | 2 ) = 1 4 P o R J 1 ( β 1 ) J 1 ( β 2 ) { cos ( θ 1 ) cos [ ( ω s ω L O ) t + ϕ 1 ] + cos ( θ 1 ) cos [ ( ω s + ω L O ) t + ϕ 1 ] + cos ( θ 2 ) cos [ ( ω s ω L O ) t + ϕ 2 ] + cos ( θ 2 ) cos [ ( ω s + ω L O ) t + ϕ 2 ] } ,
I = 1 4 P o R J 1 ( β 1 ) J 1 ( β 2 ) { cos [ ( ω s ω L O ) t + ϕ 1 + θ 1 ] + cos [ ( ω s + ω L O ) t + ϕ 1 θ 1 ] } .
I = 1 4 P o R J 1 ( β 1 ) J 1 ( β 2 ) { cos [ ( ω s ω L O ) t + θ 1 ] + cos [ ( ω s + ω L O ) t θ 1 ] } .
θ = ω O Δ n L c + π V D C V π ,
I = 1 4 P 0 J 1 ( β 1 ) J 1 ( β 2 ) { cos [ c L D π ω 0 2 ( ω s ω L O ) 2 ] cos [ ( ω s ω L O ) t + θ 1 ] + cos [ c L D π ω o 2 ( ω s + ω L O ) 2 ] cos [ ( ω s + ω L O ) t θ 1 ] } ,
I f = 1 4 P o R { J 1 ( β 1 ) J 0 ( β 2 ) sin ( θ 1 ) cos ( ω s t ) + J 1 2 ( β 1 ) cos ( 2 ω s t ) + J 1 ( β 2 ) J 0 ( β 1 ) sin ( θ 1 ) cos ( ω L O t + ϕ 1 ) + J 1 2 ( β 2 ) cos ( 2 ω L O t + 2 ϕ 1 ) + J 1 ( β 1 ) J 1 ( β 2 ) cos ( θ 1 ) cos [ ( ω s ω L O ) t ϕ 1 ] + J 1 ( β 1 ) J 1 ( β 2 ) cos ( θ 1 ) cos [ ( ω s + ω L O ) t ϕ 1 ] } .
I s = 1 4 P o R { J 1 ( β 1 ) J 0 ( β 2 ) sin ( θ 2 ) cos ( ω s t ) + J 1 2 ( β 1 ) cos ( 2 ω s t ) + J 1 ( β 2 ) J 0 ( β 1 ) sin ( θ 2 ) cos ( ω L O t + ϕ 1 ) + J 1 2 ( β 2 ) cos ( 2 ω L O t + 2 ϕ 2 ) + J 1 ( β 1 ) J 1 ( β 2 ) cos ( θ 2 ) cos [ ( ω s ω L O ) t ϕ 2 ] + J 1 ( β 1 ) J 1 ( β 2 ) cos ( θ 2 ) cos [ ( ω s + ω L O ) t + ϕ 2 ] } .
I f = 1 4 P o R { J 1 ( β 1 ) J 0 ( β 2 ) cos ( θ 1 ) sin ( ω s t ) + J 1 2 ( β 1 ) cos ( 2 ω s t ) J 1 ( β 2 ) J 0 ( β 1 ) cos ( θ 1 ) sin ( ω L O t ) J 1 2 ( β 2 ) cos ( 2 ω L O t ) J 1 ( β 1 ) J 1 ( β 2 ) sin ( θ 1 ) sin [ ( ω s ω L O ) t ] + J 1 ( β 1 ) J 1 ( β 2 ) sin ( θ 1 ) sin [ ( ω s + ω L O ) t ] } .
I = I f + I s = 1 4 P o R { J 1 ( β 1 ) J 0 ( β 2 ) sin ( ω s t + θ 1 ) + 2 J 1 2 ( β 1 ) cos ( 2 ω s t ) J 1 ( β 2 ) J 0 ( β 1 ) sin ( ω L O t + θ 1 ) + J 1 ( β 1 ) J 1 ( β 2 ) cos [ ( ω s ω L O ) t + θ 1 ] + J 1 ( β 1 ) J 1 ( β 2 ) cos [ ( ω s + ω L O ) t θ 1 ] } .

Metrics