Abstract

We numerically investigate quasi-mode-locked (QML) multi-pulse dynamics in a fiber ring laser cavity in the anomalous dispersion regime. We show that the laser cavity can operate in five constitutively different QML regimes, depending on the saturation power of the saturable absorber element and the length of the passive fiber section that parameterize the overall nonlinearity and dispersion characteristic of the laser cavity. We classify them into the incoherent noise-like-pulse, partially-coherent noise-like-pulse, symbiotic, partially-coherent multi-soliton, and coherent multi-soliton regimes, accounting for their coherence and multi-pulse formation features. In particular, we numerically clarify and confirm the symbiotic regime for the first time to the best of our knowledge, in which noise-like pulses and multi-solitons coexist stably in the cavity that has recently been observed experimentally. Furthermore, we analyze the shot-to-shot coherence characteristics of the individual QML regimes relative to the amount of the nonlinear-phase shift per roundtrip, and verify a strong correlation between them. We also show that the net-cavity dispersion plays a critical role in determining the multi-pulse dynamics out of the partially-coherent noise-like-pulse, symbiotic, and partially-coherent multi-soliton regimes, when the cavity bears moderate nonlinearity. We quantify and visualize all those characteristics onto contour maps, which will be very useful and helpful in discussing and clarifying the complex QML dynamics.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental spatio-temporal analysis on the shot-to-shot coherence and wave-packet formation in quasi-mode-locked regimes in an anomalous dispersion fiber ring cavity

Seungjong Lee, Luis Alonso Vazquez-Zuniga, Hyuntai Kim, Youngchul Kwon, Kyoungyoon Park, Hansol Kim, and Yoonchan Jeong
Opt. Express 25(23) 28385-28397 (2017)

Q-switched-like soliton bunches and noise-like pulses generation in a partially mode-locked fiber laser

Zhenhong Wang, Zhi Wang, Yan-ge Liu, Wenjing Zhao, Hao Zhang, Shangcheng Wang, Guang Yang, and Ruijing He
Opt. Express 24(13) 14709-14716 (2016)

Versatile multi-soliton patterns of noise-like pulses in a passively mode-locked fiber laser

Renlai Zhou, Xuanyi Liu, Dan Yu, Qian Li, and H. Y. Fu
Opt. Express 28(2) 912-923 (2020)

References

  • View by:
  • |
  • |
  • |

  1. L. Shah and M. E. Fermann, “High power femtosecond fiber chirped pulse amplification system for high speed micromachining,” J. Laser Micro Nanoeng. 1(3), 176–180 (2006).
    [Crossref]
  2. H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt. Lett. 30(10), 1171–1173 (2005).
    [Crossref] [PubMed]
  3. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
    [Crossref] [PubMed]
  4. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006).
    [Crossref] [PubMed]
  5. J. Clowes, “Next generation light sources for biomedical applications,” Optik Photonik 3(1), 36–38 (2008).
    [Crossref]
  6. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [Crossref]
  7. M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  8. Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
    [Crossref]
  9. A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
    [Crossref]
  10. S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
    [Crossref]
  11. J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
    [Crossref] [PubMed]
  12. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  13. D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
    [Crossref] [PubMed]
  14. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
    [Crossref] [PubMed]
  15. L. A. Vazquez-Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
    [Crossref]
  16. L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
    [Crossref]
  17. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
    [Crossref]
  18. D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
    [Crossref] [PubMed]
  19. H. Santiago-Hernandez, O. Pottiez, M. Duran-Sanchez, R. I. Alvarez-Tamayo, J. P. Lauterio-Cruz, J. C. Hernandez-Garcia, B. Ibarra-Escamilla, and E. A. Kuzin, “Dynamics of noise-like pulsing at sub-ns scale in a passively mode-locked fiber laser,” Opt. Express 23(15), 18840–18849 (2015).
    [Crossref] [PubMed]
  20. Y. Kwon and S. Lee, L. A. V.-Zuniga, H. Chang, K. Park, and Y. Jeong, “Temporal dynamics and shot-to-shot stability characteristics of three distinctive partially-mode-locked operation regimes in a fiber ring cavity,” in Proceedings of ASSL 2016, Boston, USA, 30 Oct.−3 Nov., 2016, paper AM5A.14.
  21. Y.-Q. Huang, Z.-A. Hu, H. Cui, Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser,” Opt. Lett. 41(17), 4056–4059 (2016).
    [Crossref] [PubMed]
  22. Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.
  23. A. F. J. Runge, C. Aguergaray, N. G. R. Broderick, and M. Erkintalo, “Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers,” Opt. Lett. 38(21), 4327–4330 (2013).
    [Crossref] [PubMed]
  24. L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
    [Crossref] [PubMed]
  25. Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
    [Crossref] [PubMed]
  26. D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
    [Crossref] [PubMed]
  27. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2007).
  28. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic press, 2007).
  29. D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
    [Crossref] [PubMed]
  30. A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398–400 (1995).
    [Crossref] [PubMed]
  31. R. D. Yates and D. J. Goodman, Probability and Stochastic Process, 2nd ed. (Wiley, 2005).
  32. K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers,” Opt. Express 22(7), 7932–7946 (2014).
    [Crossref] [PubMed]

2016 (3)

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Y.-Q. Huang, Z.-A. Hu, H. Cui, Z.-C. Luo, A.-P. Luo, and W.-C. Xu, “Coexistence of harmonic soliton molecules and rectangular noise-like pulses in a figure-eight fiber laser,” Opt. Lett. 41(17), 4056–4059 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers,” Opt. Express 22(7), 7932–7946 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
[Crossref] [PubMed]

L. A. Vazquez-Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

2011 (1)

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

2010 (1)

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

2008 (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

J. Clowes, “Next generation light sources for biomedical applications,” Optik Photonik 3(1), 36–38 (2008).
[Crossref]

2007 (1)

2006 (2)

L. Shah and M. E. Fermann, “High power femtosecond fiber chirped pulse amplification system for high speed micromachining,” J. Laser Micro Nanoeng. 1(3), 176–180 (2006).
[Crossref]

J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14(21), 9825–9831 (2006).
[Crossref] [PubMed]

2005 (4)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, and F. W. Wise, “Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm,” Opt. Lett. 30(10), 1171–1173 (2005).
[Crossref] [PubMed]

D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

2004 (1)

1997 (1)

1996 (1)

D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
[Crossref] [PubMed]

1995 (1)

Afanasjev, V. V.

D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
[Crossref] [PubMed]

Aguergaray, C.

Akhmediev, N.

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

Alvarez-Tamayo, R. I.

Barad, Y.

Bracamontes-Rodriguez, Y. E.

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Broderick, N. G. R.

Chang, H.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

Chen, Z.

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Cheng, Z.

Chernykh, A. I.

Chouli, S.

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Churkin, D. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Clowes, J.

J. Clowes, “Next generation light sources for biomedical applications,” Optik Photonik 3(1), 36–38 (2008).
[Crossref]

Cruz, J. L

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Cui, H.

Duran-Sanchez, M.

Erkintalo, M.

Escamilla, B. I

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

L. Shah and M. E. Fermann, “High power femtosecond fiber chirped pulse amplification system for high speed micromachining,” J. Laser Micro Nanoeng. 1(3), 176–180 (2006).
[Crossref]

T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004).
[Crossref] [PubMed]

Gao, L.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Garcia, J. C. H

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Grelu, P.

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Hartl, I.

Hernandez-Garcia, J. C.

Hong, F.-L.

Horowitz, M.

Hu, Z.-A.

Huang, W.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Huang, Y.-C.

Huang, Y.-Q.

Hui, R.

Ibarra-Escamilla, B.

Inaba, H.

Ivanenko, A.

Jeong, Y.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers,” Opt. Express 22(7), 7932–7946 (2014).
[Crossref] [PubMed]

L. A. Vazquez-Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

Jiang, Y.

Jimenez, M. B

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Johnson, C. K.

Khorev, S.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
[Crossref] [PubMed]

Kobtsev, S.

Kobtsev, S. M.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Kukarin, S.

Kuzin, E

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Kuzin, E. A.

Kwon, Y.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Lauterio-Cruz, J. P.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Lee, S.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Li, H.

Lim, H.

Liu, M.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Luo, A.-P.

Luo, Z.-C.

Matsumoto, H.

Minoshima, K.

Molla, R. G.

Nishizawa, N.

Onae, A.

Park, K.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers,” Opt. Express 22(7), 7932–7946 (2014).
[Crossref] [PubMed]

Pelinovsky, D. E.

D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
[Crossref] [PubMed]

Pérez, G. B

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Pottiez, O

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Pottiez, O.

Price, E. S.

Runge, A. F. J.

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

Sánchez, E. G

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Santiago-Hernandez, H.

Schibli, T. R.

Shah, L.

L. Shah and M. E. Fermann, “High power femtosecond fiber chirped pulse amplification system for high speed micromachining,” J. Laser Micro Nanoeng. 1(3), 176–180 (2006).
[Crossref]

Silberberg, Y.

Smirnov, S.

Smirnov, S. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Soto-Crespo, J. M.

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

Stehno-Bittel, L.

Sugavanam, S.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Takayanagi, J.

Tam, H. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Tang, D.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Tarasov, N.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Turitsyn, S. K.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398–400 (1995).
[Crossref] [PubMed]

Unruh, J. R.

Vazquez-Zuniga, L. A.

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

L. A. Vazquez-Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

Villalón, H. I

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Wabnitz, S.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Wang, P.

Wang, Y.

Wise, F. W.

Xu, W.-C.

Zhao, B.

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

D. Tang, L. Zhao, and B. Zhao, “Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser,” Opt. Express 13(7), 2289–2294 (2005).
[Crossref] [PubMed]

Zhao, L.

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Zhu, T.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

Y. Kwon, L. A. Vazquez-Zuniga, K. Park, S. Lee, H. Chang, and Y. Jeong, “Combinatorial study of supercontinuum generation dynamics in photonic crystal fibers pumped by ultrafast fiber lasers,” IEEE J. Quantum Electron. 52(6), 6400311 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. A. Vazquez-Zuniga and Y. Jeong, “Super-broadband noise-like pulse erbium-doped fiber ring laser with a highly nonlinear fiber for Raman gain enhancement,” IEEE Photonics Technol. Lett. 24(17), 1549–1551 (2012).
[Crossref]

J. Laser Micro Nanoeng. (1)

L. Shah and M. E. Fermann, “High power femtosecond fiber chirped pulse amplification system for high speed micromachining,” J. Laser Micro Nanoeng. 1(3), 176–180 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers,” Nat. Commun. 6, 7004 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Opt. Commun. (1)

L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, “120 nm bandwidth noise-like pulse generation in an erbium-doped fiber laser,” Opt. Commun. 281(1), 157–161 (2008).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Opt. Lett. (6)

Optik Photonik (1)

J. Clowes, “Next generation light sources for biomedical applications,” Optik Photonik 3(1), 36–38 (2008).
[Crossref]

Phys. Rev. A (2)

A. Komarov, H. Leblond, and F. Sanchez, “Multistability and hysteresis phenomena in passively mode-locked fiber lasers,” Phys. Rev. A 71(5), 053809 (2005).
[Crossref]

S. Chouli and P. Grelu, “Soliton rains in a fiber laser: An experimental study,” Phys. Rev. A 81(6), 063829 (2010).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev, “Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 016604 (2011).
[Crossref] [PubMed]

D. Y. Tang, B. Zhao, L. M. Zhao, and H. Y. Tam, “Soliton interaction in a fiber ring laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016616 (2005).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. E. Pelinovsky, V. V. Afanasjev, and Y. S. Kivshar, “Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 53(2), 1940–1953 (1996).
[Crossref] [PubMed]

Sci. Rep. (1)

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fibre laser,” Sci. Rep. 6, 24995 (2016).
[Crossref] [PubMed]

Other (5)

R. D. Yates and D. J. Goodman, Probability and Stochastic Process, 2nd ed. (Wiley, 2005).

Y. Kwon and S. Lee, L. A. V.-Zuniga, H. Chang, K. Park, and Y. Jeong, “Temporal dynamics and shot-to-shot stability characteristics of three distinctive partially-mode-locked operation regimes in a fiber ring cavity,” in Proceedings of ASSL 2016, Boston, USA, 30 Oct.−3 Nov., 2016, paper AM5A.14.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Academic Press, 2007).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic press, 2007).

Y. E. Bracamontes-Rodriguez, O Pottiez, E. G Sánchez, J. L Cruz, H. I Villalón, J. C. H Garcia, M. B Jimenez, G. B Pérez, B. I Escamilla, and E Kuzin, “Dual noise-like pulse and soliton operation of a fiber ring cavity,” J. Opt.in press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the PMLFL under consideration. EDF: erbium-doped fiber, SMF: single mode fiber, ISO: isolator, SA: saturable absorber, and OC: output coupler.
Fig. 2
Fig. 2 (a) Temporal and (b) spectral evolutions of a time-BW-limited sech2-shaped input pulse with Psat = 1 kW and LSMF = 100 m with respect to the number of RTs. (c) Intracavity evolution of bunched sub-pulses shown in (a) for 5 RTs. (d) RTA-AC trace of the pulses shown in (a).
Fig. 3
Fig. 3 Temporal evolution (left), AC trace (middle), spectrum (right; lower), and MDOC (right; upper) in (a) the incoherent NLP regime with Psat = 700 W and LSMF = 125 m, (b) the partially-coherent NLP regime with Psat = 700 W and LSMF = 12.5 m, (c) the symbiotic regime with Psat = 1200 W and LSMF = 50 m, (d) the partially-coherent MS regime with Psat = 1700 W and LSMF = 125 m, and (e) the coherent MS regime with Psat = 1700 W and LSMF = 12.5 m.
Fig. 4
Fig. 4 (a) Contour map of the averaged MDOC for 1 RT difference as a function of Psat and LSMF in conjunction with the specified locations of the five constitutive QML regimes. (b) Averaged MDOC as a function of the RT difference number between pulses for the five constitutive QML regimes. IC: incoherent; PC: partially-coherent; and C: coherent.
Fig. 5
Fig. 5 (a) Contour map of the NPS per RT as a function of Psat and LSMF in conjunction with the specified locations of the 5 constitutive QML regimes. (b) Averaged MDOC as a function of the NPS per RT. The blue dots and the green curve represent the original data set and the fitted curve with a Lorentzian distribution function, respectively. IC: incoherent; PC: partially-coherent; and C: coherent

Tables (1)

Tables Icon

Table 1 Simulation parameters.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A z = ( g ω g 2 j β 2 2 ) 2 A t 2 + ( g + j γ | A | 2 ) A ,
g = g 0 1 1 + E t o t / E s a t ,
T = T 0 + Δ T P ( t ) P s a t + P ( t ) ,
| g 1 , 2 ( 1 ) ( λ , τ ) | = | | A * ( λ , t ) A ( λ , t + τ ) | | A ( λ , t ) | 2 | A ( λ , t + τ ) | 2 | ,
| g ( 1 ) | a v e = | g ( 1 ) ( ω ) | S ( ω ) d ω S ( ω ) d ω ,
φ N L = 0 L c a v [ 0 T R T γ | A ( t , z ) | 4 d t / 0 T R T | A ( t , z ) | 2 ] d z ,
| g ( 1 ) | a v e = 1 1 + ( φ N L / α ) 2 ,

Metrics