Abstract

High-performance ultrathin polarizers have been experimentally demonstrated employing stacked complementary (SC) metasurfaces, which were produced using nanoimprint lithography. It is experimentally determined that the metasurface polarizers composed of Ag and Au have large extinction ratios exceeding 17000 and 12000, respectively, in spite of the subwavelength thickness. It is also shown that the ultrathin polarizers of the SC structures are optimized at telecommunication wavelengths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-angle near infrared polarizer with extremely high extinction ratio

X. L. Liu, B. Zhao, and Z. M. Zhang
Opt. Express 21(9) 10502-10510 (2013)

Broad visible spectral subwavelength polarizer with high extinction ratio using hyperbolic metamaterial

Wei Zhang, Xin Tan, Na Wu, Wenhao Li, Qingbin Jiao, and Shuo Yang
Opt. Express 27(13) 18399-18409 (2019)

Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology

Kiyotaka Sasagawa, Sanshiro Shishido, Keisuke Ando, Hitoshi Matsuoka, Toshihiko Noda, Takashi Tokuda, Kiyomi Kakiuchi, and Jun Ohta
Opt. Express 21(9) 11132-11140 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Hertz, Electric Waves (Dover, 1893).
  2. M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18, 15389–15398 (2010).
    [Crossref] [PubMed]
  3. M. Iwanaga, Plasmonic Resonators: Fundamentals, Advances, and Applications (Pan Stanford Publishing, Singapore, 2016).
    [Crossref]
  4. M. Born and E. Wolk, Principles of Optics, 7th ed. (Cambridge University, 1999).
    [Crossref]
  5. M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
    [Crossref]
  6. M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82, 155402 (2010).
    [Crossref]
  7. M. Iwanaga and B. Choi, “Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals,” Nano Lett. 15, 1904–1910 (2015).
    [Crossref] [PubMed]
  8. B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
    [Crossref]
  9. M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
    [Crossref]
  10. B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
    [Crossref]
  11. M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
    [Crossref] [PubMed]
  12. For example, http://intel.com .
  13. M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13, 053002 (2012).
    [Crossref] [PubMed]
  14. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
    [Crossref]
  15. P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,“ Rep. Prog. Phys. 78, 024401 (2015).
    [Crossref] [PubMed]
  16. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  17. L. Li, “Formulation and comparison of two recursive matrix algorithm for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996).
    [Crossref]
  18. A. D. Rakić, A. B. Djurušić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  19. Z. Ye, Y. Peng, T. Zhai, Y. Zhou, and D. Liu, “Surface plasmon-mediated transmission in double-layer metallic grating polarizers,” J. Opt. Soc. Am. B 28, 502–507 (2011).
    [Crossref]
  20. M. Iwanaga, “Ultracompact waveplates: Approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008).
    [Crossref]
  21. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
    [Crossref] [PubMed]
  22. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
    [Crossref] [PubMed]
  23. W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
    [Crossref] [PubMed]

2016 (1)

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

2015 (6)

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

M. Iwanaga and B. Choi, “Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals,” Nano Lett. 15, 1904–1910 (2015).
[Crossref] [PubMed]

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,“ Rep. Prog. Phys. 78, 024401 (2015).
[Crossref] [PubMed]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

2014 (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

2013 (1)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref] [PubMed]

2012 (1)

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13, 053002 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18, 15389–15398 (2010).
[Crossref] [PubMed]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
[Crossref]

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82, 155402 (2010).
[Crossref]

2008 (1)

M. Iwanaga, “Ultracompact waveplates: Approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008).
[Crossref]

1998 (1)

1997 (1)

1996 (1)

Alu, A.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref] [PubMed]

Born, M.

M. Born and E. Wolk, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

Capasso, F.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,“ Rep. Prog. Phys. 78, 024401 (2015).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Chen, W.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Choi, B.

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

M. Iwanaga and B. Choi, “Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals,” Nano Lett. 15, 1904–1910 (2015).
[Crossref] [PubMed]

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

Ding, F.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Djurušic, A. B.

Elazar, J. M.

Genevet, P.

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,“ Rep. Prog. Phys. 78, 024401 (2015).
[Crossref] [PubMed]

Gopalan, P.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Hertz, H.

H. Hertz, Electric Waves (Dover, 1893).

Iwanaga, M.

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

M. Iwanaga and B. Choi, “Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals,” Nano Lett. 15, 1904–1910 (2015).
[Crossref] [PubMed]

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13, 053002 (2012).
[Crossref] [PubMed]

M. Iwanaga, “Subwavelength electromagnetic dynamics in stacked complementary plasmonic crystal slabs,” Opt. Express 18, 15389–15398 (2010).
[Crossref] [PubMed]

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
[Crossref]

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82, 155402 (2010).
[Crossref]

M. Iwanaga, “Ultracompact waveplates: Approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008).
[Crossref]

M. Iwanaga, Plasmonic Resonators: Fundamentals, Advances, and Applications (Pan Stanford Publishing, Singapore, 2016).
[Crossref]

Kagan, C. R.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Li, L.

Liu, D.

Majewski, M. L.

Miyazaki, H. T.

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

Murray, C. B.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Ohtake, A.

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

Peng, Y.

Rakic, A. D.

Sakoda, K.

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Sugimoto, Y.

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

Tymchenko, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Wang, Z.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Wolk, E.

M. Born and E. Wolk, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

Wu, Y.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Ye, X.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Ye, Z.

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Zhai, T.

Zhang, M.

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref] [PubMed]

Zhou, Y.

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach,” ACS Nano 9, 4111–4119 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Iwanaga, “Polarization-selective transmission in stacked two-dimensional complementary plasmonic crystal slabs,” Appl. Phys. Lett. 96, 083106 (2010).
[Crossref]

M. Iwanaga, “Ultracompact waveplates: Approach from metamaterials,” Appl. Phys. Lett. 92, 153102 (2008).
[Crossref]

Chem. Commun. (1)

B. Choi, M. Iwanaga, H. T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, “Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer,” Chem. Commun. 51, 11470–11473 (2015).
[Crossref]

J. Micro/Nanolithogr. MEMS MOEMS (1)

B. Choi, M. Iwanaga, H. T. Miyazaki, K. Sakoda, and Y. Sugimoto, “Photoluminescence-enhanced plasmonic substrates fabricated by nanoimprint lithography,” J. Micro/Nanolithogr. MEMS MOEMS 13, 023007 (2014).
[Crossref]

J. Nanomater. (1)

M. Iwanaga, B. Choi, H. T. Miyazaki, Y. Sugimoto, and K. Sakoda, “Large-area resonance-tuned metasurfaces for on-demand enhanced spectroscopy,” J. Nanomater. 2015, 507656 (2015).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Nano Lett. (3)

M. Iwanaga and B. Choi, “Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals,” Nano Lett. 15, 1904–1910 (2015).
[Crossref] [PubMed]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13, 1086–1091 (2013).
[Crossref] [PubMed]

W. Chen, M. Tymchenko, P. Gopalan, X. Ye, Y. Wu, M. Zhang, C. B. Murray, A. Alu, and C. R. Kagan, “Large-area nanoimprinted colloidal au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces,” Nano Lett. 15, 5254–5260 (2015).
[Crossref] [PubMed]

Nanoscale (1)

M. Iwanaga, B. Choi, H. T. Miyazaki, and Y. Sugimoto, “The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces,” Nanoscale 8, 11099–11107 (2016).
[Crossref] [PubMed]

Nature Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Mater. 13, 139–150 (2014).
[Crossref]

Opt. Express (1)

Phys. Rev. B (1)

M. Iwanaga, “Electromagnetic eigenmodes in a stacked complementary plasmonic crystal slab,” Phys. Rev. B 82, 155402 (2010).
[Crossref]

Rep. Prog. Phys. (1)

P. Genevet and F. Capasso, “Holographic optical metasurfaces: a review of current progress,“ Rep. Prog. Phys. 78, 024401 (2015).
[Crossref] [PubMed]

Sci. Technol. Adv. Mater. (1)

M. Iwanaga, “Photonic metamaterials: a new class of materials for manipulating light waves,” Sci. Technol. Adv. Mater. 13, 053002 (2012).
[Crossref] [PubMed]

Other (4)

For example, http://intel.com .

M. Iwanaga, Plasmonic Resonators: Fundamentals, Advances, and Applications (Pan Stanford Publishing, Singapore, 2016).
[Crossref]

M. Born and E. Wolk, Principles of Optics, 7th ed. (Cambridge University, 1999).
[Crossref]

H. Hertz, Electric Waves (Dover, 1893).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Image of high-end polarizers: conventional prism polarizer (left) and ultrathin polarizer (right) used in this study. Both the polarizers offer large extinction ratio more than 10000. The rule indicates that the thickness of the prism polarizer is more than 1 cm. The ultrathin polarizer fabricated on a quartz substrate is composed of a semi-transparent metallic film of approximately 45 nm. (b) Schematic of the ultrathin polarizer in (a), forming a SC structure in terms of metal (gray). Pale blue denotes transparent materials such as quartz. The x and y coordinate axes are set as indicated.
Fig. 2
Fig. 2 (a) Design of the unit cell of the SC metasurfaces. The periodicity a is the same in the x and y directions. The scaling factors inside the unit cell indicate the dimensions of the II-shape structure as fractions of the periodicity a. (b) and (c) Top-view SEM images of Ag- and Au-deposited SC metasurfaces of a = 900 nm. White scale bars indicate 1 µm.
Fig. 3
Fig. 3 Nanoimprint lithography: a simplified procedure. (a) Nanoimprinting step. UV light was illuminated to make the resist solid. (b) Dry etching of quartz substrate with the patterned resist mask. After the etching, the left resist mask was removed. (c) Metal deposition, which completes the fabrication of SC structure.
Fig. 4
Fig. 4 Complex permittivity of (a) Ag and (b) Au. Measured permittivities are shown with black curves and permittivity from the literature [18] is represented with red curves. In both panels, the real parts are shown with solid curves.
Fig. 5
Fig. 5 Measured optical spectra represented with wavelengths in nm. (a)–(c) Optical spectra of the SC metasurfaces made of Ag. (a) and (b) Polarized T spectra of periodicity a = 900 and 1000 nm, respectively. Tx’s exhibit large transmittance. The incidence was set to be normal. (c) Extinction ratio, defined by Tx/Ty. Blue and red lines with dots and open circles, respectively, show the measured ratios of a = 900 and 1000 nm. Green solid and black dashed lines are shown as guides to the eye, representing the interference-suppressed spectral shapes and are described in the text. (d)–(f) Optical spectra of the SC metasurfaces made of Au, which are displayed in a similar manner to (a)–(c), respectively.
Fig. 6
Fig. 6 Numerically calculated T and extinction-ratio spectra. Periodicity was set to 900 nm. Thickness of metals was fixed at 45 nm. (a) Measured permittivity of Ag (mAg) was used in the computation. (b) BB-model permittivity of Ag (BB Ag) was used. (c) Measured permittivity of Au (mAu) was used. (d) BB-model permittivity of Au (BB Au) was used. Polarized Tx’s are shown with blue solid lines and Ty’s with red dashed lines. The T spectra are plotted on the logarithmic scale. Extinction ratios are shown with black lines, plotted for the right axes.
Fig. 7
Fig. 7 Numerical examination of extinction ratios under various conditions. (a) and (b) Dependence on Ag and Au thickness, respectively. Dashed lines indicate 50 nm thickness, black solid lines 45 nm, and gray solid lines 40 nm. Periodicity was fixed at 900 nm. We note that the cases of 45 nm are in common with those in Figs. 6(a) and 6(b). (c) Dependence on middle-layer thickness Mt in Fig. 3(c), which was varied from 55 to 205 nm. The metal was assigned to be Ag. Periodicity and the Ag thickness were set to 900 and 45 nm, respectively. (d) Dependence on periodicity, which was varied from 500 to 1000 nm. These numerical calculations were implemented using measured permittivities of Ag and Au.

Metrics