Abstract

In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analysis on Fourier characteristics of wavelength-scanned optical spectrum of low-finesse Fabry-Pérot acoustic sensor

X. Fu, P. Lu, L. Zhang, W. J. Ni, D. M. Liu, and J. S. Zhang
Opt. Express 26(17) 22064-22074 (2018)

Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor

Yi Li, Edouard Harris, Liang Chen, and Xiaoyi Bao
Opt. Express 18(8) 8135-8143 (2010)

Fiber Bragg grating sensor interrogation system based on an optoelectronic oscillator loop

Zuowei Xu, Xuewen Shu, and Hongyan Fu
Opt. Express 27(16) 23274-23281 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).
  2. Y. N. Tan, Y. Zhang, and B. O. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
    [Crossref]
  3. B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
    [Crossref] [PubMed]
  4. C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24(18), 20287–20296 (2016).
    [Crossref] [PubMed]
  5. D. Liu, Y. Liang, L. Jin, H. Sun, L. Cheng, and B. O. Guan, “Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications,” Opt. Lett. 41(19), 4530–4533 (2016).
    [Crossref] [PubMed]
  6. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref] [PubMed]
  7. L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).
  8. D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
    [Crossref]
  9. B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
    [Crossref]
  10. L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
    [Crossref]
  11. J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
    [Crossref]
  12. W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
    [Crossref] [PubMed]
  13. W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
    [Crossref] [PubMed]
  14. J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
    [Crossref] [PubMed]
  15. L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).
  16. B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
    [Crossref]
  17. J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
    [Crossref]
  18. S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
    [Crossref]
  19. C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
    [Crossref]
  20. S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
    [Crossref]
  21. J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
    [Crossref] [PubMed]
  22. F. Yang, W. Jin, H. L. Ho, F. Wang, W. Liu, L. Ma, and Y. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013).
    [Crossref] [PubMed]
  23. J. Xia, S. Xiong, F. Wang, and H. Luo, “Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 41(13), 3082–3085 (2016).
    [Crossref] [PubMed]
  24. B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
    [Crossref]
  25. X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
    [Crossref]
  26. K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).
  27. Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45(31), 7966–7970 (2006).
    [Crossref] [PubMed]
  28. A. Kapoor and E. K. Sharma, “Long period grating refractive-index sensor: optimal design for single wavelength interrogation,” Appl. Opt. 48(31), G88–G94 (2009).
    [Crossref] [PubMed]

2017 (1)

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

2016 (12)

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

J. Xia, S. Xiong, F. Wang, and H. Luo, “Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 41(13), 3082–3085 (2016).
[Crossref] [PubMed]

C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24(18), 20287–20296 (2016).
[Crossref] [PubMed]

D. Liu, Y. Liang, L. Jin, H. Sun, L. Cheng, and B. O. Guan, “Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications,” Opt. Lett. 41(19), 4530–4533 (2016).
[Crossref] [PubMed]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

2015 (2)

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref] [PubMed]

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

2014 (1)

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

2013 (2)

F. Yang, W. Jin, H. L. Ho, F. Wang, W. Liu, L. Ma, and Y. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013).
[Crossref] [PubMed]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

2012 (2)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

2011 (2)

Y. N. Tan, Y. Zhang, and B. O. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

2010 (1)

2009 (3)

2006 (2)

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45(31), 7966–7970 (2006).
[Crossref] [PubMed]

Bae, H.

Chan, C. C.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Chen, J.

Chen, Y.

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Cheng, L.

Choubey, R. K.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Digonnet, M. J. F.

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

Dong, B.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

Dong, X.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Dong, X. Y.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Fan, S.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

Fu, X.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

Gaudron, J. O.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

Grattan, K. T. V.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

Guan, B. O.

Han, M.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

Ho, H. L.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

F. Yang, W. Jin, H. L. Ho, F. Wang, W. Liu, L. Ma, and Y. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013).
[Crossref] [PubMed]

Hu, C.

Hu, L.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

Hu, Y.

F. Yang, W. Jin, H. L. Ho, F. Wang, W. Liu, L. Ma, and Y. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013).
[Crossref] [PubMed]

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Hu, Z.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Huang, X.

Jan, C.

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

Jiang, X.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Jin, L.

Jin, P.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

Jin, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Jin, W.

Jo, W.

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

Kale, S. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Kang, J.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Kapoor, A.

Liang, Y.

Liao, H.

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Lin, J.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

Liu, B.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

Liu, D.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

D. Liu, Y. Liang, L. Jin, H. Sun, L. Cheng, and B. O. Guan, “Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications,” Opt. Lett. 41(19), 4530–4533 (2016).
[Crossref] [PubMed]

Liu, G.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

Liu, H.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Liu, L.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

Liu, W.

Lu, P.

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Luo, H.

J. Xia, S. Xiong, F. Wang, and H. Luo, “Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 41(13), 3082–3085 (2016).
[Crossref] [PubMed]

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Luo, X.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

Ma, J.

Ma, L.

Ma, Y.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Ng, J.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

Ni, W.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

Niezrecki, C.

Niu, S.

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

Okabe, Y.

Pawar, D.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Rao, C. N.

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

Sharma, E. K.

Solgaard, O.

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

Sun, H.

Sun, T.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

Sun, Y.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

Surre, F.

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

Tam, H. Y.

Tan, K. M.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Tan, Y. N.

Y. N. Tan, Y. Zhang, and B. O. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
[Crossref] [PubMed]

Tian, Y.

Tjin, S. C.

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Wang, A.

Wang, D. N.

Wang, F.

Wang, J.

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

Wang, S.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Wang, W.

Wang, X.

Wang, Y.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

Wang, Y. P.

Wu, N.

Wu, Q.

Xia, J.

Xiong, S.

Xu, H.

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

Yan, L.

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Yang, F.

Yang, W.

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

Yang, Y.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

Yao, Q.

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

Ye, C.

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

Yu, C.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

Yu, M.

Yu, Y.

Yu, Z.

Zhang, B.

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

Zhang, J.

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

Zhang, Y.

Y. N. Tan, Y. Zhang, and B. O. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

Zhao, M.

Zhu, Y.

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Zhuang, S.

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections,” Appl. Phys. Lett. 108(4), 041912 (2016).
[Crossref]

IEEE Photonics J. (3)

L. Liu, P. Lu, S. Wang, X. Fu, Y. Sun, D. Liu, J. Zhang, H. Xu, and Q. Yao, “UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing,” IEEE Photonics J. 8(1), 1–9 (2016).

X. Fu, P. Lu, W. Ni, L. Liu, H. Liao, D. Liu, and J. Zhang, “Intensity demodulation based fiber sensor for dynamic measurement of acoustic wave and lateral pressure simultaneously,” IEEE Photonics J. 8(6), 1–13 (2016).
[Crossref]

L. Hu, G. Liu, Y. Zhu, X. Luo, and M. Han, “Laser frequency noise cancelation in a phase-shifted fiber Bragg grating ultrasonic sensor system using a reference grating channel,” IEEE Photonics J. 8(1), 1–8 (2016).

IEEE Photonics Technol. Lett. (6)

B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45 angled fiber,” IEEE Photonics Technol. Lett. 28(5), 581–584 (2016).
[Crossref]

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 10(25), 932–935 (2013).
[Crossref]

S. Niu, Y. Hu, Z. Hu, and H. Luo, “Fiber Fabry–Pérot hydrophone based on push–pull structure and differential detection,” IEEE Photonics Technol. Lett. 23(20), 1499–1501 (2011).
[Crossref]

C. Jan, W. Jo, M. J. F. Digonnet, and O. Solgaard, “Photonic-crystal-based fiber hydrophone with sub-100μPa/Hz pressure resolution,” IEEE Photonics Technol. Lett. 28(2), 123–126 (2016).
[Crossref]

S. Wang, P. Lu, L. Liu, H. Liao, Y. Sun, W. Ni, X. Fu, X. Jiang, D. Liu, J. Zhang, H. Xu, Q. Yao, and Y. Chen, “An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure,” IEEE Photonics Technol. Lett. 28(11), 1264–1267 (2016).
[Crossref]

B. Dong, B. Zhang, J. Ng, Y. Wang, and C. Yu, “Ultrahigh-sensitivity fiber acoustic sensor with a dual cladding modes fiber up-taper interferometer,” IEEE Photonics Technol. Lett. 27(21), 2234–2237 (2015).
[Crossref]

IEEE Sens. J. (2)

L. Liu, P. Lu, H. Liao, S. Wang, W. Yang, D. Liu, and J. Zhang, “Fiber-optic Michelson interferometric acoustic sensor based on a PP/PET diaphragm,” IEEE Sens. J. 16(9), 3054–3058 (2016).
[Crossref]

Y. N. Tan, Y. Zhang, and B. O. Guan, “Hydrostatic pressure insensitive dual polarization fiber grating laser hydrophone,” IEEE Sens. J. 11(5), 1169–1172 (2011).
[Crossref]

Opt. Commun. (2)

J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. Commun. 322, 105–108 (2014).
[Crossref]

B. Liu, J. Lin, H. Liu, Y. Ma, L. Yan, and P. Jin, “Diaphragm based long cavity Fabry–Perot fiber acoustic sensor using phase generated carrier,” Opt. Commun. 382, 514–518 (2017).
[Crossref]

Opt. Express (8)

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Opt. Express 17(19), 16613–16618 (2009).
[Crossref] [PubMed]

W. Wang, N. Wu, Y. Tian, C. Niezrecki, and X. Wang, “Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm,” Opt. Express 18(9), 9006–9014 (2010).
[Crossref] [PubMed]

J. Ma, M. Zhao, X. Huang, H. Bae, Y. Chen, and M. Yu, “Low cost, high performance white-light fiber-optic hydrophone system with a trackable working point,” Opt. Express 24(17), 19008–19019 (2016).
[Crossref] [PubMed]

B. O. Guan, Y. N. Tan, and H. Y. Tam, “Dual polarization fiber grating laser hydrophone,” Opt. Express 17(22), 19544–19550 (2009).
[Crossref] [PubMed]

C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24(18), 20287–20296 (2016).
[Crossref] [PubMed]

J. Ma, Y. Yu, and W. Jin, “Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias,” Opt. Express 23(22), 29268–29278 (2015).
[Crossref] [PubMed]

F. Yang, W. Jin, H. L. Ho, F. Wang, W. Liu, L. Ma, and Y. Hu, “Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers,” Opt. Express 21(13), 15514–15521 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Sensor. Actuat. A (2)

J. O. Gaudron, F. Surre, T. Sun, and K. T. V. Grattan, “LPG-based optical fibre sensor for acoustic wave detection,” Sensor. Actuat. A 173(1), 97–101 (2012).

K. M. Tan, C. C. Chan, S. C. Tjin, and X. Y. Dong, “Embedded long-period fiber grating bending sensor,” Sensor. Actuat. A 125(2), 267–272 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the ripple waveform.
Fig. 2
Fig. 2 LPG acoustic sensing system based on spectrum interrogation.
Fig. 3
Fig. 3 Simulated ripple spectrum and the correlated recovered time-domain signal.
Fig. 4
Fig. 4 (a) Edge curves of the ripple spectrum and (b) Recovered time-domain signal before and after envelope elimination in the simulation.
Fig. 5
Fig. 5 (a) Fitted edge curves of the ripple spectrum. (b) Time-domain signals before and after envelope elimination. (c) Extremum values found by the peak search function. (d) FFT spectrum of the recovered signal.
Fig. 6
Fig. 6 (a) Spectra and (b) Recovered signals of 200Hz acoustic wave under ordinary speed and double speed.
Fig. 7
Fig. 7 (a) Spectra and (b) Recovered signals of 200Hz and 1000Hz acoustic wave under double speed.
Fig. 8
Fig. 8 LPG's static response to curvature.
Fig. 9
Fig. 9 (a) Spectra and (b) Recovered signals of 200Hz acoustic wave under different environment.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S(λ,t)= S 0 (λ)+ΔS(λ,t)
t= λ λ 1 V ,ΔS(λ,t)=ΔS(λ, λ λ 1 V )
S(λ,t)= S 0 (λ)+ΔS(λ)cos(ωt)= S 0 (λ)+ΔS(λ)cos( ω V λ ω V λ 1 )
ΔS(λ)cos(ωt)=S(λ,t) S 0 (λ)
ΔS(λ)= S 1 (λ) S 2 (λ)
T=1 η 2 η 2 + δ 2 sin 2 ( η 2 + δ 2 l)
η= η 0 +Δηcos(ωt)= η 0 +Δηcos(ω λ λ 1 V )
[S( λ n1 )S( λ n )][S( λ n )S( λ n+1 )]<0,S( λ n )S( λ n1 )>0
[S( λ n1 )S( λ n )][S( λ n )S( λ n+1 )]<0,S( λ n )S( λ n1 )<0
d= 3 16 (1 μ 2 ) ( r 2 a 2 ) 2 E h 3 ΔP
d 0 = 3 16 (1 μ 2 ) r 4 E h 3 ΔP

Metrics