Abstract

We present the results of numerical simulations of dissipative soliton generation using nonlinear Schrödinger equations in an all-normal-dispersion (ANDi) mode-locked fiber laser based on a nonlinear optical loop mirror (NOLM). Firstly, systematic and computationally intensive analysis of the pulse state distributions in two-dimensional parameter spaces of an ANDi fiber laser was conducted. In addition, we determined that unstable non-vanishing regions including pulsation and noise-like pulses are directly related to the saturable absorptions of NOLMs and that two critical filter bandwidths separate those regions from stable ones. Finally, we found that the multi-pulsing power threshold can be maximized by using an optimal optical filter bandwidth.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror

Claude Aguergaray, Neil G. R. Broderick, Miro Erkintalo, Jocelyn S. Y. Chen, and Vladimir Kruglov
Opt. Express 20(10) 10545-10551 (2012)

Chair-like pulses in an all-normal dispersion Ytterbium-doped mode-locked fiber laser

Pradeep K. Gupta, Chandra P. Singh, Amarjeet Singh, Sunil K. Sharma, Pranab K. Mukhopadhyay, and Kushvinder S. Bindra
Appl. Opt. 55(35) 9961-9967 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
    [Crossref]
  2. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  3. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  4. L. F. Mollenauer and R. H. Stolen, “The soliton laser,” Opt. Lett. 9(1), 13–15 (1984).
    [Crossref] [PubMed]
  5. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  6. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [Crossref]
  7. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16(11), 1999 (1999).
    [Crossref]
  8. Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21(12), 14859–14866 (2013).
    [Crossref] [PubMed]
  9. J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
    [Crossref] [PubMed]
  10. P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
    [Crossref] [PubMed]
  11. L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
    [Crossref]
  12. Z. Wu, D. Liu, S. Fu, L. Li, M. Tang, and L. Zhao, “Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation,” Opt. Express 24(16), 18764–18771 (2016).
    [Crossref] [PubMed]
  13. A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
    [Crossref]
  14. D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
    [Crossref] [PubMed]
  15. T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
    [Crossref]
  16. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137–23146 (2009).
    [Crossref] [PubMed]
  17. D. Li, D. Tang, L. Zhao, and D. Shen, “Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers,” J. Lightwave Technol. 33(18), 3781–3787 (2015).
    [Crossref]
  18. E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
    [Crossref]
  19. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  20. E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
    [Crossref]
  21. Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
    [Crossref] [PubMed]
  22. Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
    [Crossref]
  23. M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
    [Crossref] [PubMed]
  24. H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
    [Crossref]
  25. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
    [Crossref]
  26. L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
    [Crossref] [PubMed]
  27. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
    [Crossref]
  28. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
    [Crossref] [PubMed]
  29. B. G. Bale, O. G. Okhitnikov, and S. K. Turitsyn, “Modeling and technologies of ultrafast fiber Lasers,” in Fiber Lasers (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012), pp. 135–175.
  30. G. P. Agrawal, “Nonlinear Fiber Optics,” Springer Berlin Heidelberg 542, 195–211 (2000).
  31. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
    [Crossref]
  32. A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
    [Crossref]
  33. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
    [Crossref]
  34. G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
    [Crossref]
  35. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
    [Crossref] [PubMed]
  36. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13(1), 56–58 (1988).
    [Crossref] [PubMed]

2017 (1)

L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
[Crossref]

2016 (3)

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Z. Wu, D. Liu, S. Fu, L. Li, M. Tang, and L. Zhao, “Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation,” Opt. Express 24(16), 18764–18771 (2016).
[Crossref] [PubMed]

2015 (5)

2014 (2)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

2013 (3)

2012 (3)

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

2011 (2)

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref]

2009 (2)

2008 (3)

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

2007 (1)

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (1)

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

2001 (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

2000 (1)

G. P. Agrawal, “Nonlinear Fiber Optics,” Springer Berlin Heidelberg 542, 195–211 (2000).

1999 (1)

1997 (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

1994 (1)

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

1988 (1)

1984 (1)

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Nonlinear Fiber Optics,” Springer Berlin Heidelberg 542, 195–211 (2000).

Aguergaray, C.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Akhmediev, N. N.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Bale, B. G.

Barnard, G.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Bettachini, V. A.

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Broderick, N. G. R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Cai, Z.

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Chen, H.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Chen, Y.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16(11), 1999 (1999).
[Crossref]

Cheng, Z.

Cho, S. H.

Chong, A.

L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Chrostowski, J.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Cui, Y.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Ding, E.

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref]

Ding, J.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Doran, N. J.

Du, G.

El-Damak, A. R.

Erkintalo, M.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

Feng, M.

Feng, Y.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Fu, S.

Fujimoto, J. G.

Grapinet, M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

Grosz, D. F.

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Gu, X.

Han, M.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Han, T.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

Hasan, T.

Haus, H. A.

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16(11), 1999 (1999).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Haus, J. W.

L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
[Crossref]

Heidt, A. M.

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
[Crossref]

Hult, J.

Ippen, E. P.

Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, and J. G. Fujimoto, “Dispersion-managed mode locking,” J. Opt. Soc. Am. B 16(11), 1999 (1999).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Jeong, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Jiang, T.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Kärtner, F. X.

Kavehrad, M.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Kieu, K.

König, P. G.

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Kutz, J. N.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref]

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137–23146 (2009).
[Crossref] [PubMed]

Kwon, Y.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Lee, S.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Li, C.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Li, D.

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

D. Li, D. Tang, L. Zhao, and D. Shen, “Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers,” J. Lightwave Technol. 33(18), 3781–3787 (2015).
[Crossref]

Li, H.

Li, L.

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

Z. Wu, D. Liu, S. Fu, L. Li, M. Tang, and L. Zhao, “Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation,” Opt. Express 24(16), 18764–18771 (2016).
[Crossref] [PubMed]

Li, X.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Liu, A.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, D.

Liu, Y.

Liu, Z.

Lu, P.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Mollenauer, L. F.

Morgner, U.

Myslinski, P.

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Provo, R.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Renninger, W. H.

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Rieznik, A. A.

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

Ruan, S.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

Runge, A.

Runge, A. F. J.

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Shen, D.

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

D. Li, D. Tang, L. Zhao, and D. Shen, “Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers,” J. Lightwave Technol. 33(18), 3781–3787 (2015).
[Crossref]

Sheng, Q.

Shlizerman, E.

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref]

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Stolen, R. H.

Sun, Z.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

Tang, D.

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

D. Li, D. Tang, L. Zhao, and D. Shen, “Mechanism of dissipative-soliton-resonance generation in passively mode-locked all-normal-dispersion fiber lasers,” J. Lightwave Technol. 33(18), 3781–3787 (2015).
[Crossref]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Tang, M.

Tian, J.

Town, G.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

Vazquez-Zuniga, L. A.

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Wang, A.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Wang, F.

Wang, J.

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Wang, L.

L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
[Crossref]

Wang, P.

Williams, M. O.

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

Wise, F.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140 (2008).
[Crossref]

Wood, D.

Wu, Z.

Xin, W.

Xu, P.

Yan, P.

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Zhang, L.

Zhang, S.

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Zhang, Z.

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, L.

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhou, J.

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (3)

E. Ding, E. Shlizerman, and J. N. Kutz, “Generalized master equation for high-energy passive mode-locking: The sinusoidal Ginzburg-Landau equation,” IEEE J. Quantum Electron. 47(5), 705–714 (2011).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive-pulse mode-locking in fiber ring lasers - theory and experiment,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
[Crossref]

IEEE Photonics J. (1)

A. A. Rieznik, A. M. Heidt, P. G. König, V. A. Bettachini, and D. F. Grosz, “Optimum integration procedures for supercontinuum simulation,” IEEE Photonics J. 4(2), 552–560 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, and Z. Zhang, “All PM Fiber Laser Mode Locked with a Compact Phase Biased Amplifier Loop Mirror,” IEEE Photonics Technol. Lett. 28(16), 1786–1789 (2016).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Nat. Photonics (2)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–874 (2013).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Commun. (2)

L. Wang, A. Chong, and J. W. Haus, “Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber,” Opt. Commun. 383, 386–390 (2017).
[Crossref]

H. Zhang, S. Zhang, X. Li, and M. Han, “Optimal design of higher energy dissipative-soliton fiber lasers,” Opt. Commun. 335, 212–217 (2015).
[Crossref]

Opt. Express (7)

B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17(25), 23137–23146 (2009).
[Crossref] [PubMed]

M. Erkintalo, C. Aguergaray, A. Runge, and N. G. R. Broderick, “Environmentally stable all-PM all-fiber giant chirp oscillator,” Opt. Express 20(20), 22669–22674 (2012).
[Crossref] [PubMed]

L. Zhang, A. R. El-Damak, Y. Feng, and X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013).
[Crossref] [PubMed]

Q. Sheng, M. Feng, W. Xin, T. Han, Y. Liu, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express 21(12), 14859–14866 (2013).
[Crossref] [PubMed]

Z. Cheng, H. Li, and P. Wang, “Simulation of generation of dissipative soliton, dissipative soliton resonance and noise-like pulse in Yb-doped mode-locked fiber lasers,” Opt. Express 23(5), 5972–5981 (2015).
[Crossref] [PubMed]

J. Wang, Z. Cai, P. Xu, G. Du, F. Wang, S. Ruan, Z. Sun, and T. Hasan, “Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion,” Opt. Express 23(8), 9947–9958 (2015).
[Crossref] [PubMed]

Z. Wu, D. Liu, S. Fu, L. Li, M. Tang, and L. Zhao, “Scalar-vector soliton fiber laser mode-locked by nonlinear polarization rotation,” Opt. Express 24(16), 18764–18771 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

Y. Jeong, L. A. Vazquez-Zuniga, S. Lee, and Y. Kwon, “On the formation of noise-like pulses in fiber ring cavity configurations,” Opt. Fiber Technol. 20(6), 575–592 (2014).
[Crossref]

A. F. J. Runge, C. Aguergaray, R. Provo, M. Erkintalo, and N. G. R. Broderick, “All-normal dispersion fiber lasers mode-locked with a nonlinear amplifying loop mirror,” Opt. Fiber Technol. 20(6), 657–665 (2014).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (2)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63(5), 056602 (2001).
[Crossref] [PubMed]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[Crossref]

Proc. SPIE (1)

E. Shlizerman, E. Ding, M. O. Williams, and J. N. Kutz, “Characterizing and suppressing multi-pulsing instabilities in mode-locked lasers,” Proc. SPIE 7933, 79331L (2011).
[Crossref]

Sci. Rep. (2)

P. Yan, A. Liu, Y. Chen, J. Wang, S. Ruan, H. Chen, and J. Ding, “Passively mode-locked fiber laser by a cell-type WS2 nanosheets saturable absorber,” Sci. Rep. 5, 12587 (2015).
[Crossref] [PubMed]

D. Li, L. Li, J. Zhou, L. Zhao, D. Tang, and D. Shen, “Characterization and compression of dissipative-soliton-resonance pulses in fiber lasers,” Sci. Rep. 6, 23631 (2016).
[Crossref] [PubMed]

Springer Berlin Heidelberg (1)

G. P. Agrawal, “Nonlinear Fiber Optics,” Springer Berlin Heidelberg 542, 195–211 (2000).

Other (1)

B. G. Bale, O. G. Okhitnikov, and S. K. Turitsyn, “Modeling and technologies of ultrafast fiber Lasers,” in Fiber Lasers (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012), pp. 135–175.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the laser cavity used in the simulation. SMF = single-mode fiber; OC = output couple.

Fig. 2
Fig. 2

State distributions in BPFW–LSMF2 parameter space when LLoop = 1.5 m and Psat = 23.5 dBm. (a) Spectral width. (b) Peak power. (c) Pulse energy. (d) Pulse width. The dark blue areas indicating zero values correspond to unstable regions that failed to converge. Four state regions are labeled with capital letters (A: DSR, B: TDS, C: unstable non-vanishing solution including pulsation and noise-like pulses, D: non-mode-locked states). Four points, which are labeled with numbers, were chosen and used to obtain the temporal and spectral pulse output examples displayed in Fig. 3.

Fig. 3
Fig. 3

Output pulse and spectrum profiles. (a) Normalized output spectra. (b) Output pulses. (c) Output pulse chirp profiles. The four state points are marked and numbered in Fig. 2 using the same colors as the lines: Point 1, blue, LSMF2 = 10 m, BPFW = 11 nm; Point 2, yellow, LSMF2 = 25 m, BPFW = 11 nm; Point 3, orange, LSMF2 = 10 m, BPFW = 16 nm; Point 4, purple, LSMF2 = 25 m, BPFW = 16 nm. Points 1 and 2 are typical dissipative solitons (Region B); Points 3 and 4 accord with the properties of DSRs (Region A).

Fig. 4
Fig. 4

Output spectrum evolution of short-period pulsation state over 100 roundtrips.

Fig. 5
Fig. 5

In-cavity spectral evolution of the pulsation state in the (a) 101st and (b) 102nd roundtrips. Only the propagation of the clockwise light field in the NOLM, which corresponds to the high-tap-ratio side in our simulation, is displayed.

Fig. 6
Fig. 6

Pulse interference at the transmittance port of the NOLM in the 101st roundtrip. (a) Pulse spectra after propagation inside the NOLM loop and their interferential spectrum. (b) Amplitudes of clockwise, counter-clockwise, and transmitted pulses.

Fig. 7
Fig. 7

Virtual saturable absorption curves (Sim1 and Sim2) calculated using the clockwise, counter-clockwise, and transmitted beams of the NOLM in the 101st and 103rd roundtrips and determined theoretically.

Fig. 8
Fig. 8

State distributions in BPFW–LLoop parameter space when LSMF2 = 2.5 m and Psat = 23.5 dBm. (a) Spectral width. (b) Peak power. (c) Pulse energy. (d) Pulse width. The dark blue areas indicating zero values represent unstable regions, and the area containing blue dots in (a) corresponds to the MLP state. The MLP region is labeled with the capital letter E. In Region E, the total energy of each pulse bundle, instead of the energies of the individual pulses, was calculated.

Fig. 9
Fig. 9

State distributions in BPFW–Psat parameter space when LSMF2 = 2.5 m and LLoop = 2 m. (a) Spectral width. (b) Peak power. (c) Pulse Energy. (d) Pulse Width. The dark blue area (Region C), corresponding to a value of zero represents the unstable region. The area containing blue dots in (a), Region E, corresponds to MLP operation. In Region E, the total energy of a pulse bundle was calculated instead of the energy of each individual pulse.

Fig. 10
Fig. 10

Spectral width (Psat = 21 dBm), maximum spectral width, and MLP threshold variation with BPFW.

Tables (1)

Tables Icon

Table 1 Parameters of the numerical model

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A(z,τ) z = g 2 A(z,τ)+i β 2 2 2 A(z,τ) τ 2 β 3 6 3 A(z,τ) τ 3 +iγ|A(z,τ) | 2 A(z,τ),
g( P avg )= g ss 1+ P avg P sat ,
P avg = c L cavity T w /2 T w /2 |A(z,τ) | 2 dτ ,
g(ω)= Δω (ω- ω 0 ) 2 + ( Δω 2 ) 2 ,

Metrics