Abstract

A diode-pumped alkali laser (DPAL) is thought to provide the significant promise for construction of high-powered lasers in the future. To examine the kinetic processes of the gas-state media (cesium vapor in this study), a mathematical model is developed while the processes including normal 3-enegry-level transition, energy pooling, and ionization are taken into account in this report. The procedures of heat transfer and laser kinetics are combined together in creating the model. We systemically investigate the influences of the temperature, cell length, and cell radius on the output features of a diode-pumped cesium vapor laser. By optimizing these key factors, the optical-to-optical conversion efficiency of a DPAL can be obviously improved. Additionally, the decrease of the output power due to energy pooling and ionization is also shrunk from 1.63% to 0.37% with the pump power of 200 W after optimization. It suggests that the effects of energy pooling and ionization should be decreased apparently under the optimal conditions. Basically, the conclusions we obtained in this study can be extended to other kinds of end-pumped laser configurations.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I

Juhong Han, You Wang, He Cai, Wei Zhang, Liangping Xue, and Hongyuan Wang
Opt. Express 22(11) 13988-14003 (2014)

Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes

Wei Zhang, You Wang, He Cai, Liangping Xue, Juhong Han, Hongyuan Wang, and Zhiye Liao
Appl. Opt. 53(19) 4180-4186 (2014)

Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II)

Juhong Han, You Wang, He Cai, Guofei An, Wei Zhang, Liangping Xue, Hongyuan Wang, Jie Zhou, Zhigang Jiang, and Ming Gao
Opt. Express 23(7) 9508-9515 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
    [Crossref] [PubMed]
  2. B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  3. W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
    [Crossref]
  4. Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
    [Crossref]
  5. Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
    [Crossref]
  6. Z. Yang, H. Wang, Q. Lu, W. Hua, and X. Xu, “Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission,” Opt. Express 19(23), 23118–23131 (2011).
    [Crossref] [PubMed]
  7. R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
    [Crossref] [PubMed]
  8. E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824–1833 (2015).
    [Crossref]
  9. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
    [Crossref]
  10. G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers,” 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011, paper 2011–4002.
  11. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
    [Crossref]
  12. B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
    [Crossref]
  13. B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
    [Crossref]
  14. B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
    [Crossref]
  15. B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
    [Crossref] [PubMed]
  16. B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
    [Crossref]
  17. K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
    [Crossref]
  18. G. An, Y. Wang, J. Han, H. Cai, J. Zhou, W. Zhang, L. Xue, H. Wang, M. Gao, and Z. Jiang, “Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser,” Opt. Express 23(20), 26414–26425 (2015).
    [Crossref] [PubMed]
  19. J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
    [Crossref] [PubMed]
  20. J. Han, Y. Wang, H. Cai, G. An, W. Zhang, L. Xue, H. Wang, J. Zhou, Z. Jiang, and M. Gao, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II),” Opt. Express 23(7), 9508–9515 (2015).
    [Crossref] [PubMed]
  21. M. J. Latif, Heat Conduction, III ed. (Verlag Berlin and Heidelberg GmbH & Co. K, 2009), Chap. 1.
  22. D. A. Steck, “Cesium D Line Data,” http://steck.us/alkalidata .
  23. Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
    [Crossref] [PubMed]
  24. J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
    [Crossref] [PubMed]
  25. S. S. Q. Wu, Hydrocarbon-free resonance transition 795 nm rubidium laser, (University of California, San Diego, 2009).

2017 (1)

2015 (3)

2014 (3)

2013 (3)

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

2012 (3)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
[Crossref] [PubMed]

2011 (2)

2008 (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

2007 (1)

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

2006 (1)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

2003 (1)

1996 (1)

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

1985 (1)

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
[Crossref] [PubMed]

Allegrini, M.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

An, G.

Barmashenko, B. D.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
[Crossref]

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824–1833 (2015).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
[Crossref] [PubMed]

Beach, R. J.

Cai, H.

de Tomasi, F.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Fukuoka, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Gao, M.

Haiducek, J. D.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Han, J.

Heaven, M. C.

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

Hiruma, T.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Hostutler, D. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Hua, W.

Huennekens, J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
[Crossref] [PubMed]

Jabbour, Z. J.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Jiang, Z.

Kan, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Kanz, V. K.

Kasamatsu, T.

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Krupke, W. F.

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795-nm rubidium laser,” Opt. Lett. 28(23), 2336–2338 (2003).
[Crossref] [PubMed]

Kubomura, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Lu, Q.

Madden, T. J.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Matsuoka, S.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Milosevic, S.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Miyajima, H.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Namiotka, R. K.

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Niigaki, M.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Oliker, B. Q.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Payne, S. A.

Pitz, G. A.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Rosenwaks, S.

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Laser power, cell temperature, and beam quality dependence on cell length of static Cs DPAL,” J. Opt. Soc. Am. B 34(2), 279–286 (2017).
[Crossref]

E. Yacoby, K. Waichman, O. Sadot, B. D. Barmashenko, and S. Rosenwaks, “Modeling of supersonic diode pumped alkali lasers,” J. Opt. Soc. Am. B 32(9), 1824–1833 (2015).
[Crossref]

K. Waichman, B. D. Barmashenko, and S. Rosenwaks, “Computational fluid dynamics modeling of subsonic flowing-gas diode-pumped alkali lasers: comparison with semi-analytical model calculations and with experimental results,” J. Opt. Soc. Am. B 31(11), 2628–2637 (2014).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Detailed analysis of kinetic and fluid dynamic processes in diode-pumped alkali lasers,” J. Opt. Soc. Am. B 30(5), 1118–1126 (2013).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas,” Opt. Lett. 37(17), 3615–3617 (2012).
[Crossref] [PubMed]

Rudolph, W.

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Sadot, O.

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Shaffer, M. K.

Waichman, K.

Walker, T. G.

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
[Crossref] [PubMed]

Wang, H.

Wang, Y.

J. Han, Y. Wang, H. Cai, G. An, W. Zhang, L. Xue, H. Wang, J. Zhou, Z. Jiang, and M. Gao, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system (part II),” Opt. Express 23(7), 9508–9515 (2015).
[Crossref] [PubMed]

G. An, Y. Wang, J. Han, H. Cai, J. Zhou, W. Zhang, L. Xue, H. Wang, M. Gao, and Z. Jiang, “Influence of energy pooling and ionization on physical features of a diode-pumped alkali laser,” Opt. Express 23(20), 26414–26425 (2015).
[Crossref] [PubMed]

J. Han, Y. Wang, H. Cai, W. Zhang, L. Xue, and H. Wang, “Algorithm for evaluation of temperature distribution of a vapor cell in a diode-pumped alkali laser system: part I,” Opt. Express 22(11), 13988–14003 (2014).
[Crossref] [PubMed]

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Wu, Z.

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
[Crossref] [PubMed]

Xu, X.

Xue, L.

Yacoby, E.

Yang, Z.

Zhang, W.

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

R. J. Knize, B. V. Zhdanov, and M. K. Shaffer, “Photoionization in alkali lasers,” Opt. Express 19(8), 7894–7902 (2011).
[Crossref] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

Zheng, Y.

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

Zhou, J.

Appl. Phys. Lett. (2)

Y. Wang, T. Kasamatsu, Y. Zheng, H. Miyajima, H. Fukuoka, S. Matsuoka, M. Niigaki, H. Kubomura, T. Hiruma, and H. Kan, “Cesium vapor laser pumped by a volume-Bragg-grating coupled quasi-continuous-wave laser-diode array,” Appl. Phys. Lett. 88(14), 141112 (2006).
[Crossref]

B. D. Barmashenko and S. Rosenwaks, “Feasibility of supersonic diode pumped alkali lasers: Model calculations,” Appl. Phys. Lett. 102(14), 141108 (2013).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44(9), 582–583 (2008).
[Crossref]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

B. D. Barmashenko, S. Rosenwaks, and M. C. Heaven, “Static diode pumped alkali lasers: Model calculations of the effects of heating, ionization, high electronic excitation and chemical reactions,” Opt. Commun. 292, 123–125 (2013).
[Crossref]

Opt. Eng. (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali laser research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Lett. A (1)

Y. Wang, M. Niigaki, H. Fukuoka, Y. Zheng, H. Miyajima, S. Matsuoka, H. Kubomura, T. Hiruma, and H. Kan, “Approaches of output improvement for cesium vapor laser pumped by a volume-Bragg-grating coupled laser-diode-array,” Phys. Lett. A 360(4-5), 659–663 (2007).
[Crossref]

Phys. Rev. A (1)

Z. J. Jabbour, R. K. Namiotka, J. Huennekens, M. Allegrini, S. Milosevic, and F. de Tomasi, “Energy-pooling collisions in cesium: 6PJ+6PJ-->6S+(nl=7P,6D,8S,4F),” Phys. Rev. A 54(2), 1372–1384 (1996).
[Crossref] [PubMed]

Phys. Rev. A Gen. Phys. (1)

J. Huennekens, Z. Wu, and T. G. Walker, “Ionization, excitation of high-lying atomic states, and molecular fluorescence in Cs vapor excited at lambda =455.7 and 459.4 nm,” Phys. Rev. A Gen. Phys. 31(1), 196–209 (1985).
[Crossref] [PubMed]

Proc. SPIE (1)

B. Q. Oliker, J. D. Haiducek, D. A. Hostutler, G. A. Pitz, W. Rudolph, and T. J. Madden, “Simulation of Deleterious Processes in a Static-Cell Diode Pumped Alkali Laser,” Proc. SPIE 8962, 89620B (2014).
[Crossref]

Prog. Quantum Electron. (1)

W. F. Krupke, “Diode pumped alkali lasers (DPALs)-A review (rev1),” Prog. Quantum Electron. 36(1), 4–28 (2012).
[Crossref]

Other (4)

G. P. Perram and G. D. Hager, “Influence of Broadband Excitation on the Performance of Diode Pumped Alkali Lasers,” 42nd AIAA Plasmadynamics and Lasers Conference, Honolulu, Hawaii, 27–30 June 2011, paper 2011–4002.

M. J. Latif, Heat Conduction, III ed. (Verlag Berlin and Heidelberg GmbH & Co. K, 2009), Chap. 1.

D. A. Steck, “Cesium D Line Data,” http://steck.us/alkalidata .

S. S. Q. Wu, Hydrocarbon-free resonance transition 795 nm rubidium laser, (University of California, San Diego, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic diagram of a static DPAL.
Fig. 2
Fig. 2 (a) Segmented configuration of a vapor cell and (b) schematic illustration of the generated and transferred heat at the transverse section of a vapor cell.
Fig. 3
Fig. 3 Energy level diagram of atomic cesium.
Fig. 4
Fig. 4 (a) Output power versus cell length at 110 °C and the influence of cell wall temperature on the output power with the cell length of (b) 25 mm, (c) 35 mm, and (d) 60 mm under the pump power of 100 W, the four curves in each figure denote cell radius of 2.5, 5.0, 7.5, and 10 mm, respectively.
Fig. 5
Fig. 5 Influence of cell length on the output power with cell radius of (a) 2.5 mm and (b) 5.0 mm, and the corresponding cell wall temperatures of the five curves in the figures are set to be 90, 100, 110, 120, and 130 °C, respectively.
Fig. 6
Fig. 6 Influcene of cell wall temperature on the output power with cell radius of (a) 2.5 mm and (b) 5.0 mm under 100 W-pumping.
Fig. 7
Fig. 7 (a) 2D-temperature distribution at the transverse section of a vapor cell with the cell length of 35 mm in Case 1 under 100 W-pumping. (b) Temperature distribution at the transverse section of a vapor cell with the cell length of 35, 50, 60, and 90 mm in Case 1 under 100 W-pumping.
Fig. 8
Fig. 8 3D (a) and 2D (b) illustrations of the output power of a DPAL changing with the cell wall temperature and the cell length with the cell radius of 5.0 mm under 100 W-pumping.
Fig. 9
Fig. 9 3D (a) and 2D (b) illustrations of the output power of a DPAL changing with the cell wall temperature and the cell length with the cell radius of 5.0 mm under 200 W-pumping.
Fig. 10
Fig. 10 3D illustrations of the optical-to-optical efficiency of a DPAL changing with the cell wall temperature and the cell length with the cell radius of 5.0 mm under (a) 100 W-pumping and (b) 200W-pumping.
Fig. 11
Fig. 11 Output power versus pump power in five cases and the optical-to-optical efficiency versus pump power in Case 1 with the cell length, cell radius, and cell wall temperature of 35 mm, 5.0 mm, and 383 K, respectively.

Tables (3)

Tables Icon

Table 1 Summary of critical parameters in our model

Tables Icon

Table 2 Different cases in the model

Tables Icon

Table 3 Percent drop in output power due to each case with cell radius of 5.0 mm under pump power of 200 W at 383 K

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

r j =R( j1 )R/N,
r j+1 =RjR/N,
T( r )= C j 1 lnr Ω j r 2 4K( T j ) + C j 0 ,
C j 1 = Ω j r j 2 2K( T j ) Φ j r j K( T j ) A j ,
C j 0 = T j C j 1 ln r j + Ω j r j 2 4K( T j ) ,
A j =2π r j L,
Φ j = [ K( T )A dT dr ] | T= T j .
Φ 1 = P thermal ,
Φ 2 = Φ 1 Q 1 = P thermal Q 1 .
Φ j = P thermal i=1 j1 Q i ,
P thermal = i=1 j Q i .
n 0 j ( T j )={ n 0 1 ( T w ),j=1 n 0 1 ( T w )( T w T j ),j>1 ,
n 0 1 ( T w )= 133.322 N A R T w ( 10 8.22127 4006.048 T w 0.00060194 T w 0.19623 log 10 T w ),
d n 1 j dt = Γ P j + Γ L j + n 2 j τ D 1 + n 3 j τ D 2 + n 4 j τ 4 + k EP2 ( n 2 j ) 2 + k EP3 ( n 3 j ) 2 + k PI n 4 j ( n 2 j + n 3 j ) d n 2 j dt = Γ L j + γ 32 ( T j ){ [ n 3 j n 2 j ][ 2exp( ΔE k B T j )1 ] n 2 j } n 2 j τ D 1 2 k EP2 ( n 2 j ) 2 k PI n 2 j n 4 j d n 3 j dt = Γ P j γ 32 ( T j ){ [ n 3 j n 2 j ][ 2exp( ΔE k B T j )1 ] n 2 j } n 3 j τ D 2 2 k EP3 ( n 3 j ) 2 k PI n 3 j n 4 j , d n 4 j dt = k EP2 ( n 2 j ) 2 + k EP3 ( n 3 j ) 2 n 4 j τ 4 k PI n 4 j ( n 2 j + n 3 j ) Γ photoionization j + k recombination ( n 5 j ) 3 d n 5 j dt = k PI n 4 j ( n 2 j + n 3 j )+ Γ photoionization j k recombination ( n 5 j ) 3 Γ photoionization j = n 4 j σ photoionization ( I l j h v l + I p j h v p )

Metrics