Abstract

A periodic micro-structure on optical microfibers induced by Plateau-Rayleigh instability (PRI) was investigated and a potential application for long period gratings (LPGs) fabrication was given. The linear relation between the average periods of micro-structures and the diameters of optical microfibers was demonstrated first. By brushing a glass rod with a Teflon droplet suspended at the end tip along microfibers, a continuous film of Teflon was formed at once, then the film broke up into a series of periodic droplets due to PRI. Periodic Teflon nodes were left after the evaporation of the solvent. A LPG structure based on polymer was finally formed by this method on a microfiber with a diameter of 5.5 μm. An attenuation transmission dip of 15 dB around 1447 nm was achieved. Investigation of the strain and temperature response characteristics of the grating presented a strain sensitivity of −2.5 pm/με and a temperature sensitivity of −157 pm/°C. The technique proposed here provides a versatile technique for polymer-based LPGs fabrication. Benefiting from the high sensitivities, LPGs based on numerous polymers fabricated in this way could have potential applications in optical and biological sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications

Yanzhen Tan, Li-Peng Sun, Long Jin, Jie Li, and Bai-Ou Guan
Opt. Express 21(1) 154-164 (2013)

CO2 laser induced long period gratings in optical microfibers

Haifeng Xuan, Wei Jin, and Min Zhang
Opt. Express 17(24) 21882-21890 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano, and C. R. Davidson, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336–338 (1996).
    [Crossref] [PubMed]
  2. H. Xuan, W. Jin, and S. Liu, “Long-period gratings in wavelength-scale microfibers,” Opt. Lett. 35(1), 85–87 (2010).
    [Crossref] [PubMed]
  3. H. Xuan, W. Jin, and M. Zhang, “CO2 laser induced long period gratings in optical microfibers,” Opt. Express 17(24), 21882–21890 (2009).
    [Crossref] [PubMed]
  4. L. P. Sun, J. Li, L. Jin, and B. O. Guan, “Structural microfiber long-period gratings,” Opt. Express 20(16), 18079–18084 (2012).
    [Crossref] [PubMed]
  5. C. Y. Lin, G. W. Chern, and L. A. Wang, “Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength,” J. Lightwave Technol. 19(8), 1212–1220 (2001).
    [Crossref]
  6. K. C. Hsu, N. K. Chen, C. L. Lee, Y. S. Chih, P. J. Jhuang, Y. Lai, and C. Lin, “Spectral response of long-period fiber grating based on tapered fiber with side-contacted metal grating,” J. Lightwave Technol. 28(7), 1057–1063 (2010).
    [Crossref]
  7. X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
    [Crossref]
  8. G. Inverarity, “Dynamic wetting of glass fibre and polymer fibre,” Polym. Int. 1(6), 245–251 (1969).
  9. L. Rayleigh, “On the instability of a cylinder of viscous liquid under capillary force,” Philos. Mag. 34(207), 145–154 (1892).
    [Crossref]
  10. H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
    [Crossref] [PubMed]
  11. J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
    [Crossref] [PubMed]
  12. J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
    [Crossref] [PubMed]
  13. A. M. Velazquea-Benitez, M. Reyes-Medrano, J. R. Velez-Cordero, and J. Hernandez-Cordero, “Controlled Deposition of Polymer Coating on Cylindrical Photonic Devices,” J. Lightwave Technol. 33(1), 176–181 (2015).
    [Crossref]
  14. D. Quéré, “Fluid Coating on a Fiber,” Annu. Rev. Fluid Mech. 31(1), 347–384 (1999).
    [Crossref]
  15. D. Quéré, “Capillarity and wetting phenomena,” Phys. Today 57(12), 66–67 (2004).
    [Crossref]
  16. Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
    [Crossref]
  17. C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [Crossref]
  18. R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
    [Crossref]
  19. Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  20. Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45(31), 7966–7970 (2006).
    [Crossref] [PubMed]

2016 (1)

Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
[Crossref]

2015 (1)

2014 (2)

J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
[Crossref] [PubMed]

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

2012 (3)

2011 (1)

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (1)

2006 (1)

2004 (1)

D. Quéré, “Capillarity and wetting phenomena,” Phys. Today 57(12), 66–67 (2004).
[Crossref]

2003 (1)

2001 (1)

1999 (1)

D. Quéré, “Fluid Coating on a Fiber,” Annu. Rev. Fluid Mech. 31(1), 347–384 (1999).
[Crossref]

1996 (1)

1969 (1)

G. Inverarity, “Dynamic wetting of glass fibre and polymer fibre,” Polym. Int. 1(6), 245–251 (1969).

1892 (1)

L. Rayleigh, “On the instability of a cylinder of viscous liquid under capillary force,” Philos. Mag. 34(207), 145–154 (1892).
[Crossref]

Abouraddy, A. F.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Bai, H.

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Banaei, E. H.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Bergano, N. S.

Chen, C.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Chen, N. K.

Chen, Q. D.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Chern, G. W.

Chih, Y. S.

Davidson, C. R.

Demokan, M. S.

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Fink, Y.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Guan, B. O.

Guo, J. C.

Hernandez-Cordero, J.

Hernández-Cordero, J.

J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
[Crossref] [PubMed]

Hsu, K. C.

Inverarity, G.

G. Inverarity, “Dynamic wetting of glass fibre and polymer fibre,” Polym. Int. 1(6), 245–251 (1969).

Jhuang, P. J.

Jiang, L.

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Jin, L.

Jin, W.

Johnson, S. G.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Ju, J.

Judkins, J. B.

Kaufman, J. J.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Lai, Y.

Lee, C. L.

Lemaire, P. J.

Li, J.

Li, Y. H.

Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
[Crossref]

Liang, J. F.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Liang, X.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Lin, C.

Lin, C. Y.

Liu, S.

Liu, Z. J.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Pedrazzani, J. R.

Quéré, D.

D. Quéré, “Capillarity and wetting phenomena,” Phys. Today 57(12), 66–67 (2004).
[Crossref]

D. Quéré, “Fluid Coating on a Fiber,” Annu. Rev. Fluid Mech. 31(1), 347–384 (1999).
[Crossref]

Ran, Z. L.

Rao, Y. J.

Rayleigh, L.

L. Rayleigh, “On the instability of a cylinder of viscous liquid under capillary force,” Philos. Mag. 34(207), 145–154 (1892).
[Crossref]

Reyes-Medrano, M.

Shabahang, S.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Sun, H. B.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Sun, L. P.

Sun, R.

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Tao, G.

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Velazquea-Benitez, A. M.

Velázquez-Benítez, A. M.

J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
[Crossref] [PubMed]

Velez-Cordero, J. R.

Vélez-Cordero, J. R.

J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
[Crossref] [PubMed]

Vengsarkar, A. M.

Wang, C.

Wang, D. N.

Wang, L. A.

Wang, L. J.

Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
[Crossref]

Wang, Y. P.

Xiao, L. M.

Xu, Z. Y.

Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
[Crossref]

Xuan, H.

Xue, Y.

Yang, R.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Yao, X.

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Yu, Y. S.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Zhang, B. L.

Zhang, M.

Zhang, X. L.

Zhang, X. Y.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Zhao, C. L.

Zheng, Y.

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Zhu, C. C.

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

Zhu, F.

Zhu, T.

Annu. Rev. Fluid Mech. (1)

D. Quéré, “Fluid Coating on a Fiber,” Annu. Rev. Fluid Mech. 31(1), 347–384 (1999).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

X. Y. Zhang, Y. S. Yu, C. Chen, C. C. Zhu, R. Yang, Z. J. Liu, J. F. Liang, Q. D. Chen, and H. B. Sun, “Point-by-Point Dip Coated Long-Period Gratings in Microfibers,” IEEE Photonics Technol. Lett. 26(24), 2503–2506 (2014).
[Crossref]

J. Lightwave Technol. (6)

C. Y. Lin, G. W. Chern, and L. A. Wang, “Periodical corrugated structure for forming sampled fiber Bragg grating and long-period fiber grating with tunable coupling strength,” J. Lightwave Technol. 19(8), 1212–1220 (2001).
[Crossref]

K. C. Hsu, N. K. Chen, C. L. Lee, Y. S. Chih, P. J. Jhuang, Y. Lai, and C. Lin, “Spectral response of long-period fiber grating based on tapered fiber with side-contacted metal grating,” J. Lightwave Technol. 28(7), 1057–1063 (2010).
[Crossref]

A. M. Velazquea-Benitez, M. Reyes-Medrano, J. R. Velez-Cordero, and J. Hernandez-Cordero, “Controlled Deposition of Polymer Coating on Cylindrical Photonic Devices,” J. Lightwave Technol. 33(1), 176–181 (2015).
[Crossref]

C. L. Zhao, L. M. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]

R. Yang, Y. S. Yu, C. Chen, Y. Xue, X. L. Zhang, J. C. Guo, C. Wang, F. Zhu, B. L. Zhang, Q. D. Chen, and H. B. Sun, “S-tapered fiber sensors for highly sensitive measurement of refractive index and axial strain,” J. Lightwave Technol. 30(19), 3126–3132 (2012).
[Crossref]

Y. J. Rao, Y. P. Wang, Z. L. Ran, and T. Zhu, “Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO2 laser pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

Langmuir (1)

J. R. Vélez-Cordero, A. M. Velázquez-Benítez, and J. Hernández-Cordero, “Thermocapillary flow in glass tubes coated with photoresponsive layers,” Langmuir 30(18), 5326–5336 (2014).
[Crossref] [PubMed]

Nature (1)

J. J. Kaufman, G. Tao, S. Shabahang, E. H. Banaei, D. S. Deng, X. Liang, S. G. Johnson, Y. Fink, and A. F. Abouraddy, “Structured spheres generated by an in-fibre fluid instability,” Nature 487(7408), 463–467 (2012).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. (1)

L. Rayleigh, “On the instability of a cylinder of viscous liquid under capillary force,” Philos. Mag. 34(207), 145–154 (1892).
[Crossref]

Photonics Res. (1)

Z. Y. Xu, Y. H. Li, and L. J. Wang, “Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing,” Photonics Res. 4(2), 45–48 (2016).
[Crossref]

Phys. Today (1)

D. Quéré, “Capillarity and wetting phenomena,” Phys. Today 57(12), 66–67 (2004).
[Crossref]

Polym. Int. (1)

G. Inverarity, “Dynamic wetting of glass fibre and polymer fibre,” Polym. Int. 1(6), 245–251 (1969).

Small (1)

H. Bai, R. Sun, J. Ju, X. Yao, Y. Zheng, and L. Jiang, “Large-Scale Fabrication of Bioinspired Fibers for Directional Water Collection,” Small 7(24), 3429–3433 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setup to form periodic nodes on optical microfibers. (a) Schematic of the setup for fabricating periodic micro-structure on optical microfiber and monitoring of transmission spectrum of the modified optical microfiber. (b) Schematic of an optical microfiber with a continuous film of Teflon. (c) Schematic of an optical microfiber with periodic Teflon nodes induced by the PRI effect.
Fig. 2
Fig. 2 Microscope images of the periodic Teflon nodes formed on a microfiber at multiple sections with different diameters.
Fig. 3
Fig. 3 The evolution of the period when the microfibers with different diameters are modified by Teflon (blue line) and PDMS (red line). All the experiments were performed at the same coating speed.
Fig. 4
Fig. 4 (a)The microscope images of the periodic Teflon structure in an optical microfiber with a diameter of 5.5μm. (b) SEM images for the details of the surface of modified optical microfiber.
Fig. 5
Fig. 5 Statistical data for periods of a LPG in a microfiber with a diameter of 5.5μm. A Gaussian fitting curve (blue line) is used to calculate the average period.
Fig. 6
Fig. 6 Transmission spectrum of a LPG in a microfiber with a diameter of 5.5 μm. Inset: transmission spectrum around an attenuation wavelength.
Fig. 7
Fig. 7 (a) Spectral responses of the LPG to strain ranging from 0 to 4500με. The red arrow represents the increase of the strain. (b) The measurement attenuation dip wavelength (square scatters) at different strain and the linear fitting result. The linear fitting curve presents a strain sensitivity of −2.5 pm/με.
Fig. 8
Fig. 8 (a) The temperature responses of a LPG in a microfiber with a diameter of 4.5 μm. The average period of the LPG is 55 μm. (b) The measurement attenuation dip wavelength (square scatters) at different temperature and the linear fitting result. The linear fitting curve presents a temperature sensitivity of −157 pm/°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ=( n 0 n m )Λ.

Metrics