Abstract

We demonstrate silicon ridge waveguide photo-detectors capable of sub-bandgap light absorption and avalanche multiplication. The proposed waveguide photo-detectors contain highly doped PN junction, where a strong electric field can generate the photon-assisted tunneling current for sub-bandgap light incidence and amplify the generated photo-current by the avalanche multiplication effect. The voltage-dependent sub-bandgap absorption coefficient and multiplication gain are experimentally evaluated for various doping configurations to find optimal photo-response with low dark currents. As a result, our representative silicon waveguide photo-detector gives sub-bandgap responsivities of ~10 and ~2 A/W under the applied reverse bias voltage of −8.3 V for near-infrared wavelengths of 1.31 and 1.52 μm, respectively. The voltage-dependent frequency photo-response is also demonstrated with theoretical verification.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators

Yu Li, Shaoqi Feng, Yu Zhang, and Andrew W. Poon
Opt. Lett. 38(23) 5200-5203 (2013)

Design of a silicon Mach–Zehnder modulator with a U-type PN junction

Tongtong Cao, Yonghao Fei, Libin Zhang, Yanmei Cao, and Shaowu Chen
Appl. Opt. 52(24) 5941-5948 (2013)

Enhanced near-infrared photodetection with avalanche gain in silicon microdisk resonators integrated with p-n diodes

Haike Zhu, Linjie Zhou, Rui Yang, Xinwan Li, and Jianping Chen
Opt. Lett. 39(15) 4525-4528 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  2. S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
    [Crossref] [PubMed]
  3. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  4. G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
    [Crossref]
  5. H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).
  6. J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
    [PubMed]
  7. A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
    [Crossref]
  8. S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Nishi, H. Shinojima, and S. Itabashi, “All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides,” Opt. Express 18(15), 15303–15310 (2010).
    [Crossref] [PubMed]
  9. M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, “All silicon infrared photodiodes: photo response and effects of processing temperature,” Opt. Express 15(25), 16886–16895 (2007).
    [Crossref] [PubMed]
  10. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [Crossref] [PubMed]
  11. R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
    [Crossref]
  12. J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
    [Crossref] [PubMed]
  13. K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett. 36(1), 52–54 (2011).
    [Crossref] [PubMed]
  14. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
    [Crossref] [PubMed]
  15. H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).
  16. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]
  17. H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
    [Crossref]
  18. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  19. Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
    [Crossref] [PubMed]
  20. Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
    [Crossref]
  21. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
    [Crossref]
  22. M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
    [Crossref]
  23. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  24. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  25. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [Crossref]
  26. P. Wendland and M. Chester, “Electric field effects on indirect optical transitions in silicon,” Phys. Rev. 140(4A), A1384–A1390 (1965).
    [Crossref]
  27. S. S. Li, Semiconductor Physical Electronics (Springer, 2012).

2015 (1)

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

2014 (3)

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

2013 (4)

Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
[Crossref]

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[Crossref] [PubMed]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (2)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

K. Preston, Y. H. D. Lee, M. Zhang, and M. Lipson, “Waveguide-integrated telecom-wavelength photodiode in deposited silicon,” Opt. Lett. 36(1), 52–54 (2011).
[Crossref] [PubMed]

2010 (4)

S. Park, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Nishi, H. Shinojima, and S. Itabashi, “All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides,” Opt. Express 18(15), 15303–15310 (2010).
[Crossref] [PubMed]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

2009 (1)

2008 (2)

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2007 (1)

2006 (2)

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

2003 (1)

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1965 (1)

P. Wendland and M. Chester, “Electric field effects on indirect optical transitions in silicon,” Phys. Rev. 140(4A), A1384–A1390 (1965).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[Crossref] [PubMed]

Akey, A. J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Assefa, S.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Aziz, M. J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bergman, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Bradley, J. D.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

Buonassisi, T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Capellini, G.

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Cartledge, J. C.

Cassan, E.

Chen, H.

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

Chen, J.

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

Cheng, J.

Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Chester, M.

P. Wendland and M. Chester, “Electric field effects on indirect optical transitions in silicon,” Phys. Rev. 140(4A), A1384–A1390 (1965).
[Crossref]

Crozat, P.

Driscoll, J. B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Emel’yanov, A. M.

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

Fédéli, J. M.

Feng, S.

Gan, F.

Geis, M. W.

Gou, S. H.

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Grein, M. E.

Grote, R. R.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Gunn, C.

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Gwilliam, R. M.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Hartmann, J. M.

Homewood, K. P.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Hutchinson, D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Itabashi, S.

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[Crossref] [PubMed]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

Käertner, F. X.

Karar, A. S.

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

J. J. Ackert, A. S. Karar, D. J. Paez, P. E. Jessop, J. C. Cartledge, and A. P. Knights, “10 Gbps silicon waveguide-integrated infrared avalanche photodiode,” Opt. Express 21(17), 19530–19537 (2013).
[Crossref] [PubMed]

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

Kopp, C.

Lee, Y. H. D.

Lennon, D. M.

Li, X.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

Li, Y.

Lipson, M.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, Y. H.

Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Liu, Y.-H.

Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
[Crossref]

Lo, Y.-H.

Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
[Crossref]

Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Lourenço, M. A.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Lyszczarz, T. M.

Mailoa, J. P.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Marris-Morini, D.

Mashanovich, G. Z.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Masini, G.

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Mathews, J.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Milosavljevic, M.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Nishi, H.

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Osgood, R.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Osmond, J.

Padmaraju, K.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Paez, D. J.

Palmacci, S. T.

Park, S.

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Persans, P. D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Polzer, A.

Poon, A. W.

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

Preston, K.

Recht, D.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Reed, G. T.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Sahni, S.

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Schulein, R. J.

Shao, G.

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Shek, E. I.

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Shinojima, H.

Simmons, C. B.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sobolev, N. A.

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Souhan, B.

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

Spector, S. J.

Sullivan, J. T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Sun, X.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

Thomson, D. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Tsuchizawa, T.

Vdovin, V. I.

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

Vivien, L.

Vlasov, Y. A.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Warrender, J. M.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Watanabe, T.

Wendland, P.

P. Wendland and M. Chester, “Electric field effects on indirect optical transitions in silicon,” Phys. Rev. 140(4A), A1384–A1390 (1965).
[Crossref]

Williams, J. S.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Winkler, M. T.

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Witzens, J.

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Wu, Q.

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

Wynn, C. M.

Xia, F.

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Yamada, K.

Yoon, J. U.

Zhang, M.

Zhang, Y.

Zhou, L.

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

Zhou, Y.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
[Crossref]

Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

Zimmermann, H.

Adv. Opt. Technol. (1)

G. Masini, S. Sahni, G. Capellini, J. Witzens, and C. Gunn, “High-speed near infrared optical receivers based on Ge waveguide photodetectors integrated in a CMOS process,” Adv. Opt. Technol. 2008, 196572 (2008).
[Crossref]

Appl. Phys. Lett. (2)

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

Y.-H. Liu, Y. Zhou, and Y.-H. Lo, “High efficiency silicon 1310 nm detector without defect states or heteroepitaxy,” Appl. Phys. Lett. 103(4), 041119 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

H. Zhu, L. Zhou, Y. Zhou, Q. Wu, X. Li, and J. Chen, “All-silicon waveguide avalanche photodetectors with ultrahigh gain-bandwidth product and low breakdown voltage,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3803006 (2014).

H. Zhu, L. Zhou, X. Sun, Y. Zhou, X. Li, and J. Chen, “On-chip optical power monitor using periodically interleaved PN Junctions integrated on a silicon waveguide,” IEEE J. Sel. Top. Quantum Electron. 20(4), 1–8 (2014).

IEEE Photonics Technol. Lett. (1)

R. R. Grote, K. Padmaraju, B. Souhan, J. B. Driscoll, K. Bergman, and R. Osgood., “10 Gb/s error-free operation of all-silicon ion-implanted-waveguide photodiodes at 1.55,” IEEE Photonics Technol. Lett. 25(1), 67–70 (2013).
[Crossref]

J. Vac. Sci. Technol. A (1)

A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, “Silicon-on-insulator waveguide photodetector with self-ion-implantation-engineered-enhanced infrared response,” J. Vac. Sci. Technol. A 24(3), 783–786 (2006).
[Crossref]

Nano Lett. (1)

Y. Zhou, Y. H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

J. P. Mailoa, A. J. Akey, C. B. Simmons, D. Hutchinson, J. Mathews, J. T. Sullivan, D. Recht, M. T. Winkler, J. S. Williams, J. M. Warrender, P. D. Persans, M. J. Aziz, and T. Buonassisi, “Room-temperature sub-band gap optoelectronic response of hyperdoped silicon,” Nat. Commun. 5(3011), 3011 (2014).
[PubMed]

Nat. Photonics (2)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Nature (1)

S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature 464(7285), 80–84 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. (1)

P. Wendland and M. Chester, “Electric field effects on indirect optical transitions in silicon,” Phys. Rev. 140(4A), A1384–A1390 (1965).
[Crossref]

Physica B (1)

N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdovin, “Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes,” Physica B 340-342, 1031–1035 (2003).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Thin Solid Films (1)

M. A. Lourenço, M. Milosavljević, G. Shao, R. M. Gwilliam, and K. P. Homewood, “Boron engineered dislocation loops for efficient room temperature silicon light emitting diodes,” Thin Solid Films 504(1), 36–40 (2006).
[Crossref]

Other (1)

S. S. Li, Semiconductor Physical Electronics (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-sectional schematic view of a PN-doped silicon ridge waveguide fabricated from a silicon-on-insulator substrate. (b) Scanning electron microscope (SEM) image of a silicon PN-doped ridge waveguide cross-section. Electric field intensity profiles for the fundamental transverse electric (TE) mode for (c) λ~1.31 μm and (d) λ~1.52 μm. (e) The amount of energy confined within the depletion region (confinement factor) for λ~1.52 μm as a function of the applied reverse bias voltage for three different doping concentrations. (f) Carrier density profiles of low-doped waveguides for different applied bias voltages ranging from 0 to −8 V.

Fig. 2
Fig. 2

(a) Energy band diagram of the low-doped PN junction under 0 V (black curves) and –8 V bias conditions (red curves). Each solid and dashed lines indicate valence (Ev) and conduction band (Ec), respectively. The inset shows the mode intensity profile in the ridge waveguide, where the grey shaded region indicates the depletion region under −8 V bias. The upper indicators of the inset show the position information. (b) Enlarged energy band diagrams under –8 V (upper figure) and 0 V (lower figure) bias conditions.

Fig. 3
Fig. 3

Calculated tunneling probability as a function of the applied voltage for (a) λ~1.31 μm and (b) λ~1.52 μm. The black, red, and blue curves represent the high-, medium-, and low-doped conditions, respectively.

Fig. 4
Fig. 4

Measured dark and photo-current for (a) low-, (b) medium-, (c) high-doped samples with different incident wavelength of 1.31 and 1.52 μm. The inset for the low-doped sample enlarges the measured current curves near the breakdown voltage. The coupled optical input power was chosen to be ~30 μW. (d) Measured carrier multiplication gain under above-bandgap light incidence (λ~0.975 μm). (e) Photo-responsive gain curves showing the total photo-response enhancement (blue dashed curve), sub-bandgap absorption enhancement (grey dashed curve), and carrier multiplication (blue dash-dotted curve) for a low-doped sample. The total response enhancement and multiplication gain curves were obtained under the incident wavelength of 1.52 and 0.975 μm, respectively. The sub-bandgap absorption enhancement was subsequently estimated by dividing the two factors. For consisteny, the black, red, and blue colors represent the high-, medium-, and low-doping cases, respectively, and the dash-dot, solid, and dash lines represent the incident wavelength of 975, 1310, and 1520 nm, respectively, in this paper.

Fig. 5
Fig. 5

Sub-bandgap absorption coefficients as a function of applied bias voltage at incident wavelength of (a) 1.31 and (b) 1.52 μm for low- (blue lines), medium- (red lines), and high-doped (black lines) devices. The corresponding responsiviteis for (c) λ~1.31 and (d) ~1.52 μm are also plotted.

Fig. 6
Fig. 6

(a) Measued frequency response with different bias voltage for 600 μm long low-doped PD. (b) Measured 3 dB bandwidth as a function of the applied voltage for 200, 400, and 600 μm long PDs. (c) Simulated RC-, transit-, and build-up-limited 3 dB bandwidths as a function of the applied voltage for the 600 μm long PD. (d) Simulated 3 dB bandwidths as a function of the applied voltage for 200, 400, and 600 μm long PDs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Texp( 4 2 m 3 E b w b )
R=M λq hc Γ α sub Γ α sub + α fca + α prop (1 e Γ α sub L α fca L α prop L )

Metrics