Abstract

We present deformable mirrors for the intra-cavity use in high-power thin-disk laser resonators. The refractive power of these mirrors is continuously adaptable from −0.7 m−1 to 0.3 m−1, corresponding to radii of curvature ranging between 2.86 m (convex) and 6.67 m (concave). The optimized shape of the mirror membrane enables a very low peak-to-valley deviation from a paraboloid deformation over a large area. With the optical performance of our mirrors being equal to that of standard HR mirrors, we were able to demonstrate the tuning of the beam quality of a thin-disk laser in a range of M2 = 3 to M2 = 1 during laser operation at output powers as high as 1.1 kW.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly-efficient continuous-wave intra-cavity frequency-doubled Yb:LuAG thin-disk laser with 1 kW of output power

Tom Dietrich, Stefan Piehler, Martin Rumpel, Philippe Villeval, Dominique Lupinski, Marwan Abdou-Ahmed, and Thomas Graf
Opt. Express 25(5) 4917-4925 (2017)

Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors

Stefan Piehler, Birgit Weichelt, Andreas Voss, Marwan Abdou Ahmed, and Thomas Graf
Opt. Lett. 37(24) 5033-5035 (2012)

Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency

Rigo Peters, Christian Kränkel, Klaus Petermann, and Günter Huber
Opt. Express 15(11) 7075-7082 (2007)

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  2. V. Magni, “Multielement stable resonators containing a variable lens,” J. Opt. Soc. Am. A 4, 1962 (1987).
    [Crossref]
  3. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [Crossref]
  4. S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
    [Crossref]
  5. B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
    [Crossref]
  6. C. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 µ J pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
    [Crossref]
  7. J.-P. Negel, A. Voss, M. AbdouAhmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013).
    [Crossref] [PubMed]
  8. J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. Abdou Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (47 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23, 21064–21077 (2015).
    [Crossref] [PubMed]
  9. A. Loescher, J.-P. Negel, M. Abdou Ahmed, and T. Graf, “Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Opt. Lett. 40, 5758–5761 (2015).
    [Crossref] [PubMed]
  10. S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
    [Crossref]
  11. V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
    [Crossref]
  12. G. Vdovin and V. Kiyko, “Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror,” Opt. Lett. 26, 798–800 (2001).
    [Crossref]
  13. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10, 550–555 (2002).
    [Crossref] [PubMed]
  14. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16, 10943–10955 (2008).
    [Crossref] [PubMed]
  15. T. Cherezova, S. Chesnokov, L. Kaptsov, V. Samarkin, and A. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40, 6026–6033 (2001).
    [Crossref]
  16. M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
    [Crossref]
  17. V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
    [Crossref]
  18. S. Chetkin and G. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
    [Crossref]
  19. W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
    [Crossref]
  20. M. Bea, Adaptive Optik für die Materialbearbeitung mit CO2-Laserstrahlung (Teubner, 1997).
  21. J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
    [Crossref]
  22. S. Piehler, B. Weichelt, A. Voss, M. Ahmed Abdou, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
    [Crossref] [PubMed]
  23. E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications (Marcel Dekker, Inc., 2001).
    [Crossref]
  24. S. Timoshenko, Theory of Plates and Shells (McGraw-Hill, 1987).
  25. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [Crossref] [PubMed]
  26. C. Baer, O. Heckl, C. Saraceno, C. Schriber, C. Kränkel, T. Südmeyer, and U. Keller, “Frontiers in passively mode-locked high-power thin disk laser oscillators,” Opt. Express 20, 7054–7065 (2012).
    [Crossref] [PubMed]
  27. J. Perchermeier and U. Wittrock, “Precise measurements of the thermo-optical aberrations of an Yb:YAG thin-disk laser,” Opt. Lett. 38, 2422–2424 (2013).
    [Crossref] [PubMed]
  28. B. Weichelt, A. Voss, M. Ahmed Abdou, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37, 3045 (2012).
    [Crossref] [PubMed]

2016 (1)

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

2015 (3)

2014 (3)

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
[Crossref]

C. Saraceno, F. Emaury, C. Schriber, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Ultrafast thin-disk laser with 80 µ J pulse energy and 242 W of average power,” Opt. Lett. 39, 9–12 (2014).
[Crossref]

2013 (2)

2012 (4)

2008 (1)

2006 (1)

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
[Crossref]

2002 (1)

2001 (2)

1995 (1)

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

1993 (1)

S. Chetkin and G. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[Crossref]

1991 (1)

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

1987 (1)

1966 (1)

Abdou, M. Ahmed

AbdouAhmed, M.

Ackermann, M.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

Ahmed, M. Abdou

Apollonov, V.

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Baer, C.

Bauer, D.

Bea, M.

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

M. Bea, Adaptive Optik für die Materialbearbeitung mit CO2-Laserstrahlung (Teubner, 1997).

Bente, E.

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Burns, D.

Cherezova, T.

Chesnokov, S.

Chetkin, S.

S. Chetkin and G. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[Crossref]

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Dannecker, B.

B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
[Crossref]

Délen, X.

B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
[Crossref]

Emaury, F.

Gerber, M.

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
[Crossref]

Giesen, A.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Girkin, J.

Golling, M.

Gottwald, T.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Graf, T.

A. Loescher, J.-P. Negel, M. Abdou Ahmed, and T. Graf, “Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier,” Opt. Lett. 40, 5758–5761 (2015).
[Crossref] [PubMed]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. Abdou Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (47 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref] [PubMed]

B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
[Crossref]

J.-P. Negel, A. Voss, M. AbdouAhmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013).
[Crossref] [PubMed]

S. Piehler, B. Weichelt, A. Voss, M. Ahmed Abdou, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[Crossref] [PubMed]

B. Weichelt, A. Voss, M. Ahmed Abdou, and T. Graf, “Enhanced performance of thin-disk lasers by pumping into the zero-phonon line,” Opt. Lett. 37, 3045 (2012).
[Crossref] [PubMed]

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
[Crossref]

Hall, T.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

Heckl, O.

Herdtle, A.

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

Hoffmann, M.

Huegel, H.

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Kaptsov, L.

Keller, U.

Killi, A.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M. Abdou Ahmed, and T. Graf, “Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (47 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm,” Opt. Express 23, 21064–21077 (2015).
[Crossref] [PubMed]

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

J.-P. Negel, A. Voss, M. AbdouAhmed, D. Bauer, D. Sutter, A. Killi, and T. Graf, “1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses,” Opt. Lett. 38, 5442–5445 (2013).
[Crossref] [PubMed]

Kiyko, V.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kogelnik, H.

Kränkel, C.

Krauthammer, T.

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications (Marcel Dekker, Inc., 2001).
[Crossref]

Kudryashov, A.

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
[Crossref]

T. Cherezova, S. Chesnokov, L. Kaptsov, V. Samarkin, and A. Kudryashov, “Active laser resonator performance: formation of a specified intensity output,” Appl. Opt. 40, 6026–6033 (2001).
[Crossref]

Kuhn, V.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Li, T.

Loescher, A.

Lubeigt, W.

Magni, V.

Mende, J.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

Negel, J.-P.

Negoita, V.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Ostrovskaya, L.

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Perchermeier, J.

Pfeiffer, W.

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

Piehler, S.

Rodin, V.

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Ryba, T.

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

Samarkin, V.

Saraceno, C.

Schad, S.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Scharun, M.

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

Schmid, E.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

Schriber, C.

Speiser, J.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

Spindler, G.

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

Stolzenburg, C.

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

Südmeyer, T.

Sutter, D.

Timoshenko, S.

S. Timoshenko, Theory of Plates and Shells (McGraw-Hill, 1987).

Valentine, G.

Vdovin, G.

G. Vdovin and V. Kiyko, “Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror,” Opt. Lett. 26, 798–800 (2001).
[Crossref]

S. Chetkin and G. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[Crossref]

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Ventsel, E.

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications (Marcel Dekker, Inc., 2001).
[Crossref]

Voss, A.

Wallmeroth, K.

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Weichelt, B.

Wentsch, K.

B. Dannecker, X. Délen, K. Wentsch, B. Weichelt, A. Voss, M. Abdou Ahmed, and T. Graf, “Passively mode-locked Yb:CaF2 thin-disk laser,” Opt. Express 22, 4008–4010 (2014).
[Crossref]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

Wittrock, U.

Appl. Opt. (2)

Appl. Phys. B (3)

J. Mende, G. Spindler, T. Hall, E. Schmid, J. Speiser, and A. Giesen, “Implementation of the concept of neutral gain modules in thin-disk lasers,” Appl. Phys. B 108, 779–792 (2012).
[Crossref]

M. Gerber, T. Graf, and A. Kudryashov, “Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror,” Appl. Phys. B 83, 43–50 (2006).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Chetkin and G. Vdovin, “Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser,” Opt. Commun. 100, 159–165 (1993).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Proc. SPIE (3)

V. Kuhn, T. Gottwald, C. Stolzenburg, S. Schad, A. Killi, and T. Ryba, “Latest advances in high brightness disk lasers,” Proc. SPIE 9342, 93420Y (2015).
[Crossref]

W. Pfeiffer, M. Bea, A. Herdtle, A. Giesen, and H. Huegel, “Minimized phase distortion in industrial high-power CO2 lasers,” Proc. SPIE 2502, 583 (1995).
[Crossref]

S. Schad, T. Gottwald, V. Kuhn, M. Ackermann, D. Bauer, M. Scharun, and A. Killi, “Recent development of disk lasers at TRUMPF,” Proc. SPIE 9726, 972615 (2016).
[Crossref]

Proc. SPIE 8959 (1)

S. Schad, V. Kuhn, T. Gottwald, V. Negoita, A. Killi, and K. Wallmeroth, “Near fundamental mode high-power thin-disk laser,” Proc. SPIE 8959 8959, 89590U (2014).
[Crossref]

Sov. J. Quantum Electron. (1)

V. Apollonov, G. Vdovin, L. Ostrovskaya, V. Rodin, and S. Chetkin, “Active correction of a thermal lens in a solid-state laser. I. Metal mirror with a controlled curvature of the central region of the reflecting surface,” Sov. J. Quantum Electron. 21, 116–118 (1991).
[Crossref]

Other (4)

M. Bea, Adaptive Optik für die Materialbearbeitung mit CO2-Laserstrahlung (Teubner, 1997).

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

E. Ventsel and T. Krauthammer, Thin Plates and Shells: Theory, Analysis and Applications (Marcel Dekker, Inc., 2001).
[Crossref]

S. Timoshenko, Theory of Plates and Shells (McGraw-Hill, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Principle design of the mirrors. A thin membrane is generated from a solid mirror by ultrasonic lapping. The thickness distribution h(r) of the mirror is optimized in such a way, that the evenly distributed surface load p (symbolized by the vertical arrows) leads to the desired deformation wsurface (r, p) of the mirror surface.

Fig. 2
Fig. 2

(a) Radially varying flexural rigidity of the mirror optimized for ideal spherical deformation according to Eq. (6) for an area of 16 mm diameter. (b) Optimized thickness from flexural rigidity and spherical approximation.

Fig. 3
Fig. 3

(a) Deformation for the optimized mirror thickness (solid line) according to Fig. 2, and for the best-fitting spherical thickness distribution (dashed line). The ideal parabolic deformation is indicated by the dotted line. (b) Deviation of the deformations of both the optimized mirror and the mirror with the spherically approximated membrane thickness from an ideal parabolic deformation.

Fig. 4
Fig. 4

(a) Design parameters of the spherically deformable mirror. (b) Mirror mounted on brass mount.

Fig. 5
Fig. 5

Interferometrically measured deformations. (a) Convex deformation at a pressure of 0.4 bar. (b) Concave deformation at a pressure of about −0.4 bar.

Fig. 6
Fig. 6

Cross-sectional view of measured deformations along with parabolic fits.

Fig. 7
Fig. 7

(a) Radius of curvature from parabolic fits. (b) Refractive power from fits.

Fig. 8
Fig. 8

Peak-to-valley deviation from paraboloid deformation evaluated over different apertures.

Fig. 9
Fig. 9

Resonator used for the experiments

Fig. 10
Fig. 10

Calculated 1/e2-radius of fundamental mode on the disk in mm. The dashed red lines indicate the limits of the resonator’s stability zone.

Fig. 11
Fig. 11

Output power and optical efficiency when using a standard HR-mirror and the deformable mirror (DM) set for optimum beam quality, respectively. The inset shows the evolution of the beam quality over the pump power both for the HR-mirror and the DM.

Fig. 12
Fig. 12

Output power and beam quality achieved in two different experiments.

Fig. 13
Fig. 13

Measured values of M2 and output power at variation of the backside pressure (a) at a pump power of 971 W and (b) at a pump power of 2560 W.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d 3 w ( r , p ) d r 3 + d 2 w ( r , p ) d r 2 ( 1 F ( r ) d F ( r ) d r + 1 r ) + d w ( r , p ) d r ( ν r F ( r ) d F ( r ) d r 1 r 2 ) + p ( r ) r 2 F ( r ) = 0 .
F ( r ) = E h ( r ) 3 12 ( 1 ν 2 ) .
p = p i n p a m b
d w ( r , p ) d r | r = 0 = 0 , d w ( r , p ) d r | r = a = 0 , and w ( a , p ) = 0 .
w ( r , p ) = p 64 F ( a 2 r 2 ) 2
w g ( r , p g ) = { 1 2 R g r 2 + a 2 2 R g , for r r t c 0 + c 1 r + c 2 r 2 + c 3 r 3 + c 4 r 4 , for a r > r t
w M M = M 2 w 00 ,
M 2 w p u m p 2 w 00 , D i s k 2 .

Metrics