Abstract

We demonstrate a spectroscopic imaging based super-resolution approach by separating the overlapping diffraction spots into several detectors during a single scanning period and taking advantage of the size-dependent emission wavelength in nanoparticles. This approach has been tested using off-the-shelf quantum dots (Invitrogen Qdot) and in-house novel ultra-small (~3 nm) Ge QDs. Furthermore, we developed a method-specific Gaussian fitting and maximum likelihood estimation based on a Matlab algorithm for fast QD localisation. This methodology results in a three-fold improvement in the number of localised QDs compared to non-spectroscopic images. With the addition of advanced ultra-small Ge probes, the number can be improved even further, giving at least 1.5 times improvement when compared to Qdots. Using a standard scanning confocal microscope we achieved a data acquisition rate of 200 ms per image frame. This is an improvement on single molecule localisation super-resolution microscopy where repeated image capture limits the imaging speed, and the size of fluorescence probes limits the possible theoretical localisation resolution. We show that our spectral deconvolution approach has a potential to deliver data acquisition rates on the ms scale thus providing super-resolution in live systems.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Localisation microscopy with quantum dots using non-negative matrix factorisation

Ondřej Mandula, Ivana Šumanovac Šestak, Rainer Heintzmann, and Christopher K. I. Williams
Opt. Express 22(20) 24594-24605 (2014)

Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples

Peter W. Winter, Andrew G. York, Damian Dalle Nogare, Maria Ingaramo, Ryan Christensen, Ajay Chitnis, George H. Patterson, and Hari Shroff
Optica 1(3) 181-191 (2014)

Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells [Invited]

Anna-Karin Gustavsson, Petar N. Petrov, and W. E. Moerner
Opt. Express 26(10) 13122-13147 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Xi, Y. Liu, and Q. Ren, “Scanning and Image Reconstruction Techniques in Confocal Laser Scanning Microscopy,” in Laser Scanning, Theory and Application, C.C. Wang, ed. (Shanghai: InTech, 2011).
  2. R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief. Funct. Genomics Proteomics 5(4), 289–301 (2006).
    [Crossref] [PubMed]
  3. C. Cremer, Optics Far Beyond the Diffraction Limit, 2nd edition (Springer, 2012), Chapter 20.
  4. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  5. M. Schrader and S. W. Hell, “4Pi confocal images with axial super-resolution,” J. Microsc. 183(08), 189–195 (1996).
  6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  8. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  9. P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
    [Crossref]
  10. N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
    [Crossref] [PubMed]
  11. D. R. Whelan and T. D. M. Bell, “Super-resolution single-molecule localization microscopy: tricks of the trade,” J. Phys. Chem. Lett. 6(3), 374–382 (2015).
    [Crossref] [PubMed]
  12. W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
    [Crossref] [PubMed]
  13. A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11(3), 267–279 (2014).
    [Crossref] [PubMed]
  14. D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
    [Crossref] [PubMed]
  15. H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
    [Crossref] [PubMed]
  16. J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
    [Crossref] [PubMed]
  17. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
    [Crossref] [PubMed]
  18. B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
    [Crossref] [PubMed]
  19. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [Crossref] [PubMed]
  20. E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
    [Crossref] [PubMed]
  21. M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors (Basel) 9(9), 7266–7286 (2009).
    [Crossref] [PubMed]
  22. M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
    [Crossref] [PubMed]
  23. J. Fan and P. K. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6(19), 2080–2098 (2010).
    [Crossref] [PubMed]
  24. N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
    [Crossref]
  25. H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
    [Crossref]
  26. J. H. Warner and R. D. Tilley, “Synthesis of water-soluble photoluminescent germanium nanocrystals,” Nanotechnology 17(15), 3745–3749 (2006).
    [Crossref]
  27. J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
    [Crossref]
  28. D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
    [Crossref] [PubMed]
  29. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [Crossref] [PubMed]
  30. E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
    [Crossref] [PubMed]
  31. J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
    [Crossref] [PubMed]
  32. K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13(18), 7052–7062 (2005).
    [Crossref] [PubMed]
  33. A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
    [Crossref]
  34. X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
    [Crossref] [PubMed]
  35. D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
    [Crossref] [PubMed]
  36. A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
    [Crossref]
  37. W. R. Funnell and D. Maysinger, “Three-dimensional reconstruction of cell nuclei, internalized quantum dots and sites of lipid peroxidation,” J. Nanobiotechnology 4(1), 10 (2006).
    [Crossref] [PubMed]
  38. H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
    [Crossref] [PubMed]
  39. R. Neher and E. Neher, “Optimizing imaging parameters for the separation of multiple labels in a fluorescence image,” J. Microsc. 213(1), 46–62 (2004).
    [Crossref] [PubMed]
  40. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
    [Crossref] [PubMed]
  41. K. P. Murphy, Machine Learning: A Probabilistic Perspective (Massachusetts Institute of Technology, 2012)
  42. A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).
  43. L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
    [Crossref] [PubMed]
  44. N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
    [Crossref] [PubMed]

2016 (1)

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

2015 (2)

D. R. Whelan and T. D. M. Bell, “Super-resolution single-molecule localization microscopy: tricks of the trade,” J. Phys. Chem. Lett. 6(3), 374–382 (2015).
[Crossref] [PubMed]

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

2014 (2)

H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
[Crossref] [PubMed]

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11(3), 267–279 (2014).
[Crossref] [PubMed]

2013 (2)

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

2012 (2)

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

2010 (2)

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

J. Fan and P. K. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6(19), 2080–2098 (2010).
[Crossref] [PubMed]

2009 (4)

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors (Basel) 9(9), 7266–7286 (2009).
[Crossref] [PubMed]

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

2008 (3)

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

2007 (2)

J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
[Crossref]

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

2006 (6)

W. R. Funnell and D. Maysinger, “Three-dimensional reconstruction of cell nuclei, internalized quantum dots and sites of lipid peroxidation,” J. Nanobiotechnology 4(1), 10 (2006).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

J. H. Warner and R. D. Tilley, “Synthesis of water-soluble photoluminescent germanium nanocrystals,” Nanotechnology 17(15), 3745–3749 (2006).
[Crossref]

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief. Funct. Genomics Proteomics 5(4), 289–301 (2006).
[Crossref] [PubMed]

2005 (8)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13(18), 7052–7062 (2005).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
[Crossref] [PubMed]

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).

2004 (3)

R. Neher and E. Neher, “Optimizing imaging parameters for the separation of multiple labels in a fluorescence image,” J. Microsc. 213(1), 46–62 (2004).
[Crossref] [PubMed]

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

1998 (1)

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

1996 (1)

M. Schrader and S. W. Hell, “4Pi confocal images with axial super-resolution,” J. Microsc. 183(08), 189–195 (1996).

1994 (1)

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Ameer-Beg, S.

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Arya, H.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Atwater, M.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Baddeley, D.

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Banterle, N.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

Barrow, E.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Batram, C.

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

Beck, M.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

Bell, T. D. M.

D. R. Whelan and T. D. M. Bell, “Super-resolution single-molecule localization microscopy: tricks of the trade,” J. Phys. Chem. Lett. 6(3), 374–382 (2015).
[Crossref] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Best, G.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Birk, U.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

Biteen, J. S.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Boi, F.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bostedt, C.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Bowman, G. R.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Buades, A.

A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).

Bui, K. H.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

Byers, R. J.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Cai, L.

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

Chaniotakis, N.

M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors (Basel) 9(9), 7266–7286 (2009).
[Crossref] [PubMed]

Chen, H.

H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
[Crossref] [PubMed]

Chou, N. H.

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

Chu, P. K.

J. Fan and P. K. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6(19), 2080–2098 (2010).
[Crossref] [PubMed]

Clay, V.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Col, B.

A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).

Connelly, J. T.

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Cremer, C.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Deerinck, T. J.

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

Dobrucki, J. W.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Ellisman, M. H.

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

Elnatan, D.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Ersoy, O.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Fan, J.

J. Fan and P. K. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6(19), 2080–2098 (2010).
[Crossref] [PubMed]

Ficz, G.

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief. Funct. Genomics Proteomics 5(4), 289–301 (2006).
[Crossref] [PubMed]

Frasco, M. F.

M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors (Basel) 9(9), 7266–7286 (2009).
[Crossref] [PubMed]

Funnell, W. R.

W. R. Funnell and D. Maysinger, “Three-dimensional reconstruction of cell nuclei, internalized quantum dots and sites of lipid peroxidation,” J. Nanobiotechnology 4(1), 10 (2006).
[Crossref] [PubMed]

Galli, G.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Giepmans, B. N.

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Goldman, E. R.

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

Gong, Y.

H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
[Crossref] [PubMed]

Gunkel, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Han, R.

H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
[Crossref] [PubMed]

Hausmann, M.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Heintzmann, R.

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief. Funct. Genomics Proteomics 5(4), 289–301 (2006).
[Crossref] [PubMed]

K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express 13(18), 7052–7062 (2005).
[Crossref] [PubMed]

Hell, S. W.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hirano, T.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Hosny, N. A.

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Hoyland, J. A.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Huang, B.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Huo, Q.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Jaiswal, J. K.

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

Jiang, J. Z.

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Jones, Y. Z.

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

Jovin, T.

Juhasz, R.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

Karatutlu, A.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Kaufmann, R.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Kaul, S. C.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Kaul, Z.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Klimov, V. I.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Knight, M. M.

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Lee, D. C.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Lee, H. K.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Lemke, E. A.

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

Lemmer, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Lidke, K.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Linnros, J.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Little, W.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Liu, J. F.

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Liu, X.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Lubeck, E.

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

Luklinska, Z.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Mattoussi, H.

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

Maysinger, D.

W. R. Funnell and D. Maysinger, “Three-dimensional reconstruction of cell nuclei, internalized quantum dots and sites of lipid peroxidation,” J. Nanobiotechnology 4(1), 10 (2006).
[Crossref] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Moerner, W. E.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Mohana, G. K.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Morel, J. M.

A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Motl, N. E.

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

Müller, P.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Neher, E.

R. Neher and E. Neher, “Optimizing imaging parameters for the separation of multiple labels in a fluorescence image,” J. Microsc. 213(1), 46–62 (2004).
[Crossref] [PubMed]

Neher, R.

R. Neher and E. Neher, “Optimizing imaging parameters for the separation of multiple labels in a fluorescence image,” J. Microsc. 213(1), 46–62 (2004).
[Crossref] [PubMed]

Novak, J. A.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Oyler, K. D.

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

Parak, W. J.

W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Pellegrino, T.

W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
[Crossref] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Pietryga, J. M.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Pizzagalli, L.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Plank, C.

W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
[Crossref] [PubMed]

Prakash, K.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Provencio, P.

J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
[Crossref]

Puech, P.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Reymann, J.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Rieger, B.

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Robel, I.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Roignant, J. Y.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Samara, G.

J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
[Crossref]

Sapelkin, A. V.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Schaak, R. E.

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

Schaller, R. D.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Schrader, M.

M. Schrader and S. W. Hell, “4Pi confocal images with axial super-resolution,” J. Microsc. 183(08), 189–195 (1996).

Shapiro, L.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Shepard, J. R. E.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Simon, S. M.

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

Small, A.

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11(3), 267–279 (2014).
[Crossref] [PubMed]

Smarr, B. L.

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

Song, M.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Stahlheber, S.

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11(3), 267–279 (2014).
[Crossref] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Sweeney, E.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Sychugov, I.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

Szczurek, A. T.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Taira, K.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Terminello, L.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Tholouli, E.

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

Thompson, M. A.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Tilley, R. D.

J. H. Warner and R. D. Tilley, “Synthesis of water-soluble photoluminescent germanium nanocrystals,” Nanotechnology 17(15), 3745–3749 (2006).
[Crossref]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Tselentis, N. K.

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Urich, A.

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Valenta, J.

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

Van Buuren, T.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Wadhwa, R.

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Walling, M. A.

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

Wang, J.

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Wang, Y. W.

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Warner, J. H.

J. H. Warner and R. D. Tilley, “Synthesis of water-soluble photoluminescent germanium nanocrystals,” Nanotechnology 17(15), 3745–3749 (2006).
[Crossref]

Weiland, Y.

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Werder, D. J.

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

Wheeler, A. P.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Whelan, D. R.

D. R. Whelan and T. D. M. Bell, “Super-resolution single-molecule localization microscopy: tricks of the trade,” J. Phys. Chem. Lett. 6(3), 374–382 (2015).
[Crossref] [PubMed]

Wichmann, J.

Wilcoxon, J.

J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
[Crossref]

Willey, T. M.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Williamson, A. J.

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

Wu, H. P.

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Zeng, Y. W.

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Zhang, W.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhang, Y.

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Zhu, L.

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Zurek-Biesiada, D.

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

Appl. Phys. B (1)

P. Lemmer, M. Gunkel, D. Baddeley, R. Kaufmann, A. Urich, Y. Weiland, J. Reymann, P. Müller, M. Hausmann, and C. Cremer, “SPDM: light microscopy with single-molecule resolution at the nanoscale,” Appl. Phys. B 93(1), 1–12 (2008).
[Crossref]

Biochem. Biophys. Res. Commun. (1)

H. Arya, Z. Kaul, R. Wadhwa, K. Taira, T. Hirano, and S. C. Kaul, “Quantum dots in bio-imaging: Revolution by the small,” Biochem. Biophys. Res. Commun. 329(4), 1173–1177 (2005).
[Crossref] [PubMed]

Brief. Funct. Genomics Proteomics (1)

R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Brief. Funct. Genomics Proteomics 5(4), 289–301 (2006).
[Crossref] [PubMed]

Chem. Mater. (1)

N. H. Chou, K. D. Oyler, N. E. Motl, and R. E. Schaak, “Colloidal synthesis of germanium nanocrystals using room-temperature benchtop chemistry,” Chem. Mater. 21(18), 4105–4107 (2009).
[Crossref]

Colloids Surf. B Biointerfaces (1)

X. Liu, M. Atwater, J. Wang, and Q. Huo, “Extinction coefficient of gold nanoparticles with different sizes and different capping ligands,” Colloids Surf. B Biointerfaces 58(1), 3–7 (2007).
[Crossref] [PubMed]

Data Brief (1)

D. Żurek-Biesiada, A. T. Szczurek, K. Prakash, G. Best, G. K. Mohana, H. K. Lee, J. Y. Roignant, J. W. Dobrucki, C. Cremer, and U. Birk, “Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe,” Data Brief 7, 157–171 (2016).
[Crossref] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Int. J. Mol. Sci. (1)

M. A. Walling, J. A. Novak, and J. R. E. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

D. C. Lee, J. M. Pietryga, I. Robel, D. J. Werder, R. D. Schaller, and V. I. Klimov, “Colloidal synthesis of infrared-emitting germanium nanocrystals,” J. Am. Chem. Soc. 131(10), 3436–3437 (2009).
[Crossref] [PubMed]

J. Microsc. (3)

D. Baddeley, Y. Weiland, C. Batram, U. Birk, and C. Cremer, “Model based precision structural measurements on barely resolved objects,” J. Microsc. 237(1), 70–78 (2010).
[Crossref] [PubMed]

R. Neher and E. Neher, “Optimizing imaging parameters for the separation of multiple labels in a fluorescence image,” J. Microsc. 213(1), 46–62 (2004).
[Crossref] [PubMed]

M. Schrader and S. W. Hell, “4Pi confocal images with axial super-resolution,” J. Microsc. 183(08), 189–195 (1996).

J. Nanobiotechnology (1)

W. R. Funnell and D. Maysinger, “Three-dimensional reconstruction of cell nuclei, internalized quantum dots and sites of lipid peroxidation,” J. Nanobiotechnology 4(1), 10 (2006).
[Crossref] [PubMed]

J. Pathol. (1)

E. Tholouli, E. Sweeney, E. Barrow, V. Clay, J. A. Hoyland, and R. J. Byers, “Quantum dots light up pathology,” J. Pathol. 216(3), 275–285 (2008).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

D. R. Whelan and T. D. M. Bell, “Super-resolution single-molecule localization microscopy: tricks of the trade,” J. Phys. Chem. Lett. 6(3), 374–382 (2015).
[Crossref] [PubMed]

J. Struct. Biol. (1)

N. Banterle, K. H. Bui, E. A. Lemke, and M. Beck, “Fourier ring correlation as a resolution criterion for super-resolution microscopy,” J. Struct. Biol. 183(3), 363–367 (2013).
[Crossref] [PubMed]

Mater. Lett. (1)

H. P. Wu, J. F. Liu, Y. W. Wang, Y. W. Zeng, and J. Z. Jiang, “Preparation of Ge nanocrystals via ultrasonic solution reduction,” Mater. Lett. 60(7), 986–989 (2006).
[Crossref]

Multiscale Model. Simul. (1)

A. Buades, B. Col, and J. M. Morel, “A review of image denoising algorithms,” Multiscale Model. Simul. 5, 49–53 (2005).

Nano Lett. (1)

A. J. Williamson, C. Bostedt, T. Van Buuren, T. M. Willey, L. Terminello, G. Galli, and L. Pizzagalli, “Probing the electronic density of states of Germanium nanoparticles,” Nano Lett. 4(6), 1041–1045 (2004).
[Crossref]

Nanotechnology (2)

J. H. Warner and R. D. Tilley, “Synthesis of water-soluble photoluminescent germanium nanocrystals,” Nanotechnology 17(15), 3745–3749 (2006).
[Crossref]

W. J. Parak, T. Pellegrino, and C. Plank, “Labelling of cells with quantum dots,” Nanotechnology 16(2), R9–R25 (2005).
[Crossref] [PubMed]

Nat. Methods (7)

A. Small and S. Stahlheber, “Fluorophore localization algorithms for super-resolution microscopy,” Nat. Methods 11(3), 267–279 (2014).
[Crossref] [PubMed]

J. K. Jaiswal, E. R. Goldman, H. Mattoussi, and S. M. Simon, “Use of quantum dots for live cell imaging,” Nat. Methods 1(1), 73–78 (2004).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

B. N. Giepmans, T. J. Deerinck, B. L. Smarr, Y. Z. Jones, and M. H. Ellisman, “Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots,” Nat. Methods 2(10), 743–749 (2005).
[Crossref] [PubMed]

L. Zhu, W. Zhang, D. Elnatan, and B. Huang, “Faster STORM using compressed sensing,” Nat. Methods 9(7), 721–723 (2012).
[Crossref] [PubMed]

E. Lubeck and L. Cai, “Single-cell systems biology by super-resolution imaging and combinatorial labeling,” Nat. Methods 9(7), 743–748 (2012).
[Crossref] [PubMed]

J. S. Biteen, M. A. Thompson, N. K. Tselentis, G. R. Bowman, L. Shapiro, and W. E. Moerner, “Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP,” Nat. Methods 5(11), 947–949 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Wilcoxon, P. Provencio, and G. Samara, “Erratum: Synthesis and optical properties of colloidal germanium nanocrystals,” Phys. Rev. B 76(19), 199904 (2007).
[Crossref]

Phys. Rev. Lett. (1)

I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, “Narrow luminescence linewidth of a silicon quantum dot,” Phys. Rev. Lett. 94(8), 087405 (2005).
[Crossref] [PubMed]

PLoS One (2)

H. Chen, Y. Gong, and R. Han, “Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings,” PLoS One 9(10), e110400 (2014).
[Crossref] [PubMed]

N. A. Hosny, M. Song, J. T. Connelly, S. Ameer-Beg, M. M. Knight, and A. P. Wheeler, “Super-resolution imaging strategies for cell biologists using a spinning disk microscope,” PLoS One 8(10), e74604 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

RSC Advances (1)

A. Karatutlu, M. Song, A. P. Wheeler, O. Ersoy, W. Little, Y. Zhang, P. Puech, F. Boi, Z. Luklinska, and A. V. Sapelkin, “Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging,” RSC Advances 5(26), 20566–20573 (2015).
[Crossref]

Science (3)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science 307(5709), 538–544 (2005).
[Crossref] [PubMed]

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[Crossref] [PubMed]

Sensors (Basel) (1)

M. F. Frasco and N. Chaniotakis, “Semiconductor quantum dots in chemical sensors and biosensors,” Sensors (Basel) 9(9), 7266–7286 (2009).
[Crossref] [PubMed]

Small (1)

J. Fan and P. K. Chu, “Group IV nanoparticles: synthesis, properties, and biological applications,” Small 6(19), 2080–2098 (2010).
[Crossref] [PubMed]

Other (3)

K. P. Murphy, Machine Learning: A Probabilistic Perspective (Massachusetts Institute of Technology, 2012)

P. Xi, Y. Liu, and Q. Ren, “Scanning and Image Reconstruction Techniques in Confocal Laser Scanning Microscopy,” in Laser Scanning, Theory and Application, C.C. Wang, ed. (Shanghai: InTech, 2011).

C. Cremer, Optics Far Beyond the Diffraction Limit, 2nd edition (Springer, 2012), Chapter 20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic view of spectroscopic super-resolution strategy. Sample ‘A’ is excited by a point laser source, then emission fluorescence is captured by the high NA lens and transferred into the microscope. Before being detected, this fluorescence light is recycled in a spectrophotometer which uses a diffraction loop to separates different wavelength components into different positions (showed as the rainbow bar before the PMTs detector). In other words, diffraction loop separates the closely-overlapping emission spectra of different quantum dots into different image frames, which is similar to the repeat photo-activation/imaging procedures in (f)PALM/STORM that separate overlapping fluorescence into different time series frames. Using this method, a super-resolution image ‘B’ is able to be reconstructed from separated image frames.
Fig. 2
Fig. 2 Spectroscopic super-resolution reconstruction. (a) Individual planes of a spectral image series (λ-stack). The images were enlarged in b1 – b4 and then localised at a high precision (b1’ - b4’) using SSA algorithm based on Gaussian fitting (c). Super-resolution image (d) is obtained by putting all localisations together. However, fluorescence image without spectroscopic separation is shown as optical diffraction blurry (e). Scale bar, 200 nm (c), 400 nm (e).
Fig. 3
Fig. 3 Emission-size analysis for Invitrogen Qdots and Ge QDs. (a) Emission spectra of three Qdots (green, yellow, red dash lines) and their physical size (blue markers) measured from TEM images. Black full line is the emission spectra of an equally mixed sample of these three Qdots (5 nm Qdots emitting 515 nm light, 11 nm Qdots emitting 605 nm light, 15 nm Qdots emitting 705 nm light). Mixed sample shows a 3-peaks emission spectra ((black full line) contributed by three Qdots types. (b) A broad emission spectrum of as-prepared Ge QDs sample with particle sizes from 2.6 to 5.2 nm (c). It is assumed that emission is due to variation in particle sizes: red dash lines and blue markers indicate the emission spectra of several different size Ge QDs expected based on quantum confinement effects. (c) TEM image of Ge QDs. Scale bar, 50 nm.
Fig. 4
Fig. 4 Biocompatibility tests of Ge QDs and Invitrogen Qdots on HeLa cells. (a) Left, Trypan blue test of Qdots (50 nM/ mL) treated Hela cells. Right, merged phase contrast & fluorescence images of Ge QDs in live cells. (b) DNA staining of HeLa cells treated by, Left, non-QDs, Middle, Ge QDs (25 nM / mL), Right, Invitrogen Qdots (25 nM / mL) after 24 hours. (c) Quantitative analysis of cell nucleus size (top) and shape (bottom) changes under QDs treatments. Results are presented as mean and standard deviation. A p value of larger than 0.05 (p > 0:05) is considered non-significant statistic difference between the compared data sets. Scale bar, 30 µm (a), 20 µm (b).
Fig. 5
Fig. 5 Spectroscopic cell images. (a) HeLa cell cultivated with mixed three Invitrogen Qdots and total fluorescence image. (b) Zoomed view of the yellow square area in the fluorescence image (a) and the spectroscopic separated image frames – (c) Lambda stack collected using confocal microscopy. Three channels (517nm, 605nm, 702nm) where three Qdots emission peaks occur were presented (green, magenta and yellow). Each frame only contains fluorescence signals from specific Qdots thus generate a unique fluorescence image. (d) Ge QDs labelled HeLa cell was demonstrated using the same microscopy technique. Ge QDs shows a strong fluorescence emission in cells. (e) Zoomed view of details of the yellow square in the fluorescence image (inset d) and f indicates the spectroscopic separated images frames. Three channels (595 nm, 644 nm, 692 nm) present the different spectroscopic images. (f) Lambda stack frames contain different spectroscopic fluorescence signals individually, therefore generate different images. Scale bars, 10 µm (a), 5 µm (d) 500 nm (b, e).
Fig. 6
Fig. 6 Spectroscopic super-resolution localisation and reconstruction. Left column are Qdots super-resolution data and results. (a, b) selected three spectroscopic separated frames (595 nm, 644 nm, 692 nm) and sum of all spectroscopic separated frames. (e, f) csSTORM localised results of (a) and (b) respectively; (g) final merged csSTORM results of images from (f). (k, l) localisation and reconstruction of (a, b) frames using our SSA algorithm, revealing the potential Qdots distribution behind the fluorescence signals (a). Right column are Ge QDs data and results. (c, d) fluorescence and sum images. (h-j) csSTORM process results, a final csSTORM final result (j). (m, n) SSA result of (c, d) represents the final super-resolution image in SSRM. Two closely located QDs (yellow zoom-in square in (i) and (n)) are localised through spectroscopic separation and reconstruction. Scale bars, 500 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v= 1 2π σ 2 e x 2 + y 2 2 σ 2 v xy
f( D|μ,σ )= 1 2π σ e ( i=1 n ( d i μ) 2 )    0< d i <
μ= i=1 n di n σ= i=1 n ( diμ ) 2 n

Metrics