Abstract

Polarization conversion is highly desired for numerous valuable applications such as remote detection and high-precision measurement. It is conventionally achieved through utilizing bulky birefringent crystals or by delicate tailored anisotropy materials. However, such schemes are not compatible with both dynamic and compact on-chip applications. We propose an active metasurface that can generate tunable ellipticity for arbitrary incident polarization with a non-volatile and reversible modulation method. The metasurface consists of V-shape plasmonic antenna arrays and an interval modulation layer made of the phase change material GST for active phase control. Our approach allows the generation of high-quality arbitrary elliptical polarization states in an ultrathin, non-mechanical, and flexible fashion, representing a significant advance compared with its conventional counterparts.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic switching in phase-discontinuity complementary metasurface twisted nematic cell

Y. U. Lee, J. Kim, J. H. Woo, L. H. Bang, E. Y. Choi, E. S. Kim, and J. W. Wu
Opt. Express 22(17) 20816-20827 (2014)

Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances

Jingyi Tian, Qiang Li, Jun Lu, and Min Qiu
Opt. Express 26(18) 23918-23925 (2018)

Analysis of a segmented q-plate tunable retarder for the generation of first-order vector beams

Jeffrey A. Davis, Nobuyuki Hashimoto, Makoto Kurihara, Enrique Hurtado, Melanie Pierce, María M. Sánchez-López, Katherine Badham, and Ignacio Moreno
Appl. Opt. 54(32) 9583-9590 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  2. J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
    [Crossref]
  3. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [Crossref] [PubMed]
  4. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  5. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  6. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  7. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  8. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  9. B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
    [Crossref] [PubMed]
  10. E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
    [Crossref] [PubMed]
  11. M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
    [Crossref] [PubMed]
  12. L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
    [Crossref] [PubMed]
  13. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  14. C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  15. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
    [Crossref] [PubMed]
  16. C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
    [Crossref]
  17. L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
    [Crossref]
  18. D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
    [Crossref] [PubMed]
  19. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  20. I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
    [Crossref] [PubMed]
  21. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
    [Crossref] [PubMed]
  22. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  23. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
    [Crossref] [PubMed]
  24. N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
    [Crossref] [PubMed]
  25. P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
    [Crossref] [PubMed]
  26. N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
    [Crossref]
  27. Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
    [Crossref]
  28. M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
    [Crossref] [PubMed]
  29. X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
    [Crossref] [PubMed]
  30. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).
  31. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  32. A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  33. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
    [Crossref] [PubMed]
  34. Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
    [Crossref]
  35. Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
    [Crossref]
  36. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  37. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  38. A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  39. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
    [Crossref] [PubMed]

2016 (5)

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

2015 (6)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

2014 (9)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

2013 (5)

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

2012 (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

2011 (4)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

2010 (1)

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

2009 (2)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

2008 (1)

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

2007 (1)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Aieta, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Atwater, H. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Averitt, R. D.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Aydin, K.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Aziz, M. M.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Basov, D. N.

Belkin, M. A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Bhaskaran, H.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Blanchard, R.

Boreman, G. D.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Briggs, R. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Brongersma, M. L.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Cheah, K.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, J.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chigrin, D. N.

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chu, W.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Cong, L.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Craig, C.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dabidian, N.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Danner, A.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Dong, F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Dutta-Gupta, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Eggleton, B. J.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Fallahazad, B.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Fan, K.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Gholipour, B.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Giessen, H.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Gong, Q.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Gong, Y.

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Gu, Y.

Guo, L. J.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Han, J.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hasman, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Hewak, D. W.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hicken, R. J.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Hong, M.

Hosseini, P.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Huang, K.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huidobro, P. A.

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Hussain, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Jin, M.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, and F. Capasso, “Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material,” Opt. Lett. 38(3), 368–370 (2013).
[Crossref] [PubMed]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kelaita, Y. A.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Khanikaev, A.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Khanikaev, A. B.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kholmanov, I.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Kleiner, V.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Kohary, K. I.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Kraft, M.

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Lai, K.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Lail, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Lee, J.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, L.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Li, Q. T.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Li, T.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Li, Y.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Li, Z.

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Lindenberg, A. M.

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Ling, X.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, H.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Liu, Y.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Lu, F.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Luther-Davies, B.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Macdonald, K. F.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Maddock, J.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Magnuson, C.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Maguid, E.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Maier, S. A.

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maß, T. W. W.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Mehmood, M. Q.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Mei, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Michel, A. K.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Michel, A. U.

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Mousavi, S. H.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Munk, B. A.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Pendry, J. B.

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Pilon, D. V.

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

Qazilbash, M. M.

Qiu, C.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Qiu, C. W.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

D. Wang, Y. Gu, Y. Gong, C. W. Qiu, and M. Hong, “An ultrathin terahertz quarter-wave plate using planar babinet-inverted metasurface,” Opt. Express 23(9), 11114–11122 (2015).
[Crossref] [PubMed]

Ramanathan, S.

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Rogers, E. T. F.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Roy, T.

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Ruoff, R. S.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Salinga, M.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schäferling, M.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Schönauer, K.

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shvets, G.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Siew, S. Y.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Singh, R.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Song, Z.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, C.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tang, X.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Tao, H.

Tatar, K.

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Taubner, T.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Teng, J.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tharp, J. S.

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tittl, A.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Trendafilov, S.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

Tutuc, E.

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Veksler, D.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, B.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Wang, C.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Wang, D.

Wang, Q.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Wang, S.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Wright, C. D.

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Wuttig, M.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Xiao, Y. F.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Xu, L.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Xu, N.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

Yang, D.

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yang, Z.

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yin, X.

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Yulevich, I.

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Zalden, P.

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, L.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, S.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, T.

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

Zhang, W.

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Zhu, S.

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

ACS Nano (1)

P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, “Graphene as a tunable anisotropic or isotropic plasmonic metasurface,” ACS Nano 10(5), 5499–5506 (2016).
[Crossref] [PubMed]

ACS Photonics (2)

N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff, and G. Shvets, “Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces,” ACS Photonics 2(2), 216–227 (2015).
[Crossref]

A. U. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Adv. Mater. (3)

M. Q. Mehmood, S. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, J. Teng, A. Danner, S. Zhang, and C. W. Qiu, “Visible-frequency metasurface for structuring and spatially multiplexing optical vortices,” Adv. Mater. 28(13), 2533–2539 (2016).
[Crossref] [PubMed]

L. Cong, N. Xu, J. Han, W. Zhang, and R. Singh, “A tunable dispersion-free terahertz metadevice with Pancharatnam-Berry-phase-enabled modulation and polarization control,” Adv. Mater. 27(42), 6630–6636 (2015).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Q. Wang, J. Maddock, E. T. F. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Z. Li and N. Yu, “Modulation of mid-infrared light using graphene-metal plasmonic antennas,” Appl. Phys. Lett. 102(13), 131108 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

J. S. Tharp, B. A. Lail, B. A. Munk, and G. D. Boreman, “Design and demonstration of an infrared meanderline phase retarder,” IEEE Trans. Antenn. Propag. 55(11), 2983–2988 (2007).
[Crossref]

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Light Sci. Appl. (1)

L. Li, T. Li, X. Tang, S. Wang, Q. Wang, and S. Zhu, “Plasmonic polarization generator in well-routed beaming,” Light Sci. Appl. 4(9e330), e330 (2015).
[Crossref]

Nano Lett. (8)

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett. 12(12), 6328–6333 (2012).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

B. Wang, F. Dong, Q. T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y. F. Xiao, Q. Gong, and Y. Li, “Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,” Nano Lett. 16(8), 5235–5240 (2016).
[Crossref] [PubMed]

N. Dabidian, S. Dutta-Gupta, I. Kholmanov, K. Lai, F. Lu, J. Lee, M. Jin, S. Trendafilov, A. Khanikaev, B. Fallahazad, E. Tutuc, M. A. Belkin, and G. Shvets, “Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces,” Nano Lett. 16(6), 3607–3615 (2016).
[Crossref] [PubMed]

A. K. Michel, D. N. Chigrin, T. W. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, A. K. Michel, A. Tittl, M. Wuttig, T. Taubner, and H. Giessen, “Active chiral plasmonics,” Nano Lett. 15(7), 4255–4260 (2015).
[Crossref] [PubMed]

I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Highly strained compliant optical metamaterials with large frequency tunability,” Nano Lett. 10(10), 4222–4227 (2010).
[Crossref] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett. 11(5), 2142–2144 (2011).
[Crossref] [PubMed]

Nat. Commun. (3)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. Cheah, C. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater. 7(8), 653–658 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

Q. Wang, E. T. F. Rogers, B. Gholipour, C. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2015).
[Crossref]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5(3), 141–148 (2011).

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

C. Pfeiffer and A. Grbic, “Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis,” Phys. Rev. Appl. 2(4), 044011 (2014).
[Crossref]

Phys. Rev. Lett. (2)

C. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96(10), 107401 (2006).
[Crossref] [PubMed]

Science (4)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

E. Maguid, I. Yulevich, D. Veksler, V. Kleiner, M. L. Brongersma, and E. Hasman, “Photonic spin-controlled multifunctional shared-aperture antenna array,” Science 352(6290), 1202–1206 (2016).
[Crossref] [PubMed]

Other (1)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the metasurface for active tunability of the ellipticity of anomalously diffracted beams. There are three layers: the antenna layer, the interval modulation layer and the silicon substrate. The interval modulation layer consists of a silicon strip (blue) and a GST (faint orange) strip underlying the subunit 1 and subunit 2, respectively. The nanoantenna array can generate the necessary phase gradient; therefore deflect the scattered wave away from the original propagation direction. The interval modulation layer can actively control the phase difference between the scattering waves from two subunits.
Fig. 2
Fig. 2 Schematic of a single antenna and a unit cell. (a) Structure parameters of V-shape antenna. s ^ and a ^ are the unit vectors along the symmetric and antisymmetric axis of the antenna, respectively. (b) Arrangement of the V-shape antennas in one unit. Through rotating clockwise the first four antennas by 90°, the last four antennas are acquired to reverse the phase of (S)i − (A)i component. Anomalous beam 1 and 2 are the (2β1α)-polarized and (2β2α)-polarized scattering wave from subunit 1 and subunit 2, respectively. They are spatial overlapped and can interfere coherently to generate the final transmitted beam. E1 and E2 denote the polarization of the anomalous beam from subunit 1 and subunit 2 in x’-y’ plane, respectively. And x’-y’ is the local coordinate of anomalous beam, where y’-axis is parallel to the y-axis.
Fig. 3
Fig. 3 Calculated scattering amplitude (a) and phase shift (b) of a single antenna with various arm lengths L and opening angles θ on a homogeneous silicon substrate. The inset in (a) shows the schematic of the simulated V-shape antenna with β = 45°. The four circles in (a) and (b) indicate the value of L and θ used for further simulation.
Fig. 4
Fig. 4 Full-wave simulation for each single V-shape antenna positioned above GST and substrate layer. (a) Amplitude distribution and (b) phase distribution of the (S)i − (A)i component by changing the refractive index of GST from 3 to 4.5. The antenna 9 is the same as antenna 1. The inset in (a) shows the simulation structure.
Fig. 5
Fig. 5 Calculated output polarization state and intensity. (a) Calculated degree of circular polarization and intensity of the anomalous beam as a function of refractive index under α = 45°. (b) The polarization ellipse for the anomalous beam at n = 3, 3.4, 4, 4.2 and 4.5, respectively. The arrows denote the handedness of the elliptical beam. Ex and Ey denote the amplitude of electric field in x’-y’ coordinate in Fig. 2(b). (c) Polarization state of the anomalous beam along the main axis of Poincaré sphere under α = 45°.
Fig. 6
Fig. 6 The polarization state of anomalous beam along the main axis of Poincaré sphere under α = 0°, 45°, and 90°.

Tables (1)

Tables Icon

Table 1 Structure parameter of antennas in a subunit

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E i =cos(βα) S i s ^ +cos(90°β+α) A i a ^
E i = 1 2 ( S i A i )[cos(2βα)y+sin(2βα)x]+ 1 2 ( S i + A i )(cosαy+sinαx)
{ S 0 = E x 2 + E y 2 S 1 = E x 2 E y 2 = S 0 cos2χcos2ψ S 2 =2 E x E y cosδ= S 0 cos2χsin2ψ S 3 =2 E x E y sinδ= S 0 sin2χ

Metrics