Abstract

We determine how to alter the properties of the quantum vacuum at ultraviolet wavelengths to simultaneously enhance the spontaneous transition rates and the far field detection rate of quantum emitters. We find the response of several complex nanostructures in the 200 – 400 nm range, where many organic molecules have fluorescent responses, using an analytic decomposition of the electromagnetic response in terms of continuous spectra of plane waves and discrete sets of modes. Coupling a nanorod with an aluminum substrate gives decay rates up to 2.7 × 103 times larger than the decay rate in vacuum and enhancements of 824 for the far field emission into the entire upper semi-space and of 2.04 × 103 for emission within a cone with a 60° semi-angle. This effect is due to both an enhancement of the field at the emitter’s position and a reshaping of the radiation patterns near mode resonances and cannot be obtained by replacing the aluminum substrate with a second nanoparticle or with a fused silica substrate. These large decay rates and far field enhancement factors will be very useful in the detection of fluorescence signals, as these resonances can be shifted by changing the dimensions of the nanorod. Moreover, these nanostructures have potential for nano-lasing because the Q factors of these resonances can reach 107.9, higher than the Q factors observed in nano-lasers.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

Corrections

Duncan McArthur, Benjamin Hourahine, and Francesco Papoff, "Enhancing ultraviolet spontaneous emission with a designed quantum vacuum: erratum," Opt. Express 25, 20950-20951 (2017)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-17-20950

OSA Recommended Articles
Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Enhanced spontaneous emission of quantum emitter in monolayer and double layer black phosphorus

Lu Sun, Guirong Zhang, Shengli Zhang, and Jianhua Ji
Opt. Express 25(13) 14270-14281 (2017)

Large enhancement of spontaneous emission rates of InAs quantum dots in GaAs microdisks

W. Fang, J. Y. Xu, A. Yamilov, H. Cao, Y. Ma, S. T. Ho, and G. S. Solomon
Opt. Lett. 27(11) 948-950 (2002)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
    [Crossref]
  2. A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
    [Crossref] [PubMed]
  3. C. V. Vlack, P. Yao, and S. Hughes, “Optical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides,” Phys. Rev. B 83, 245404 (2011).
    [Crossref]
  4. G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
    [Crossref] [PubMed]
  5. R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
    [Crossref] [PubMed]
  6. M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
    [Crossref] [PubMed]
  7. N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).
  8. S. K. Jha, N. Mojarad, M. Agio, J. F. Löffler, and Y. Ekinci, “Enhancement of the intrinsic fluorescence of adenine using aluminum nanoparticle arrays,” Opt. Express 23, 24719–24729 (2015).
    [Crossref] [PubMed]
  9. G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. i. electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975).
    [Crossref]
  10. S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
    [Crossref]
  11. S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
    [Crossref]
  12. H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
    [Crossref]
  13. A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House Publishers, 1995).
  14. J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).
  15. M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
    [Crossref]
  16. G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
    [Crossref]
  17. C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [Crossref] [PubMed]
  18. M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
    [Crossref]
  19. W. Vogel and D.-G. Welsh, Quantum Optics (Wiley-VCH, 2006), 3rd ed.
    [Crossref]
  20. K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
    [Crossref] [PubMed]
  21. G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
    [Crossref] [PubMed]
  22. W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
    [Crossref] [PubMed]
  23. M. Zhdanov, Integral Transforms in Geophysics (Springer-Verlag, 1988).
    [Crossref]
  24. F. Papoff and B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19, 21432–21444 (2011).
    [Crossref] [PubMed]
  25. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
    [Crossref]
  26. G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
    [Crossref]
  27. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
    [Crossref]
  28. I. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).
    [Crossref]
  29. E. Coronado and G. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
    [Crossref]
  30. N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
    [Crossref] [PubMed]
  31. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
    [Crossref] [PubMed]
  32. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
    [Crossref] [PubMed]
  33. S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
    [Crossref] [PubMed]
  34. F. J. G. de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
    [Crossref]
  35. A. Doicu, Y. Eremin, and T. Wreidt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Accademic Press, 2000).
  36. R. Rodríguez-Oliveros and J. A. Sánchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011).
    [Crossref] [PubMed]
  37. E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
    [Crossref]
  38. B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).
  39. D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
    [Crossref]
  40. F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
    [Crossref] [PubMed]
  41. D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
    [Crossref]
  42. F. G. de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086 (1999).
    [Crossref]
  43. L. Novotny and B. Hecht, eds., Principles of Nano-Optics, 2nd ed. (Cambridge University Press, 2012).
    [Crossref]
  44. A. F. Stevenson, “Relations between the transmitting and receiving properties of antennas,” Quart. Appl. Math. 5, 369–384 (1948).
    [Crossref]

2017 (1)

D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
[Crossref]

2016 (2)

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

2015 (6)

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

S. K. Jha, N. Mojarad, M. Agio, J. F. Löffler, and Y. Ekinci, “Enhancement of the intrinsic fluorescence of adenine using aluminum nanoparticle arrays,” Opt. Express 23, 24719–24729 (2015).
[Crossref] [PubMed]

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
[Crossref] [PubMed]

2014 (6)

M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
[Crossref]

2013 (2)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

2012 (3)

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (2)

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

2008 (1)

F. J. G. de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref]

2007 (1)

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
[Crossref]

2004 (1)

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
[Crossref]

2003 (2)

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

E. Coronado and G. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

2000 (1)

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

1999 (2)

F. G. de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086 (1999).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

1998 (1)

S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
[Crossref]

1995 (1)

1975 (1)

G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. i. electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975).
[Crossref]

1965 (1)

1948 (1)

A. F. Stevenson, “Relations between the transmitting and receiving properties of antennas,” Quart. Appl. Math. 5, 369–384 (1948).
[Crossref]

Agarwal, G. S.

G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. i. electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975).
[Crossref]

Agio, M.

Aizpurua, J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Antosiewicz, T.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Arbouet, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Asvestas, J. S.

J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Barrow, S.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Baumberg, J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Baumberg, J. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Benson, O.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Borisov, A. G.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Boudarham, G.

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

Bowman, J. J.

J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).

Bozhevolnyi, S.

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Buhmann, S. Y.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Busch, K.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Cerjan, B.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Cirací, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Coronado, E.

E. Coronado and G. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

Crozier, K. B.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

de Abajo, F. G.

F. G. de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086 (1999).
[Crossref]

de Abajo, F. J. G.

F. J. G. de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Doicu, A.

A. Doicu, Y. Eremin, and T. Wreidt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Accademic Press, 2000).

Doost, M. B.

M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]

Dujardin, E.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Dung, H. T.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Ekinci, Y.

Engel, P.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Eremin, Y.

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
[Crossref]

A. Doicu, Y. Eremin, and T. Wreidt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Accademic Press, 2000).

Eremina, E.

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
[Crossref]

Esteban, R.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Everitt, H. O.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Evers, F.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Fainman, Y.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Gay-Balmaz, P.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Girard, C.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Halas, N. J.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Holms, K.

B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).

Hourahine, B.

D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
[Crossref]

F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
[Crossref] [PubMed]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
[Crossref] [PubMed]

D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
[Crossref]

B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).

F. Papoff and B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19, 21432–21444 (2011).
[Crossref] [PubMed]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Hughes, S.

C. V. Vlack, P. Yao, and S. Hughes, “Optical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides,” Phys. Rev. B 83, 245404 (2011).
[Crossref]

Hugonin, J.

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Imura, K.

Jha, S. K.

Käll, M.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Kästel, J.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

Katz, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Khajavikhan, M.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

King, N. S.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Knight, M. W.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Knöll, L.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
[Crossref]

Kociak, M.

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

F. J. G. de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref]

Kumar, I.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Kwiatkowski, A.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Lagendijk, A.

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
[Crossref]

Lalanne, P.

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Langbein, W.

M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]

Lee, J. H.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Lezec, H. J.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Liu, L.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Löffler, J. F.

Lomakin, V.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Maksymov, I.

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Malitson, I.

Manjavacas, A.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Markel, V. A.

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
[Crossref]

Martin, O. J. F.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Marty, R.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

McArthur, D.

D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
[Crossref]

F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
[Crossref] [PubMed]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
[Crossref] [PubMed]

D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
[Crossref]

McClain, M. J.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Misawa, H.

Mizrahi, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Mojarad, N.

Mortensen, N.

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Mortensen, N. A.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Muljarov, E. A.

M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Nilsson, S.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Nordlander, P.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

Okamoto, H.

Panasyuk, G. Y.

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
[Crossref]

Papoff, F.

D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
[Crossref]

F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
[Crossref] [PubMed]

D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
[Crossref]

K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, and F. Papoff, “Plasmon modes in single gold nanodiscs,” Opt. Express 22, 12189–12199 (2014).
[Crossref] [PubMed]

B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).

F. Papoff and B. Hourahine, “Geometrical Mie theory for resonances in nanoparticles of any shape,” Opt. Express 19, 21432–21444 (2011).
[Crossref] [PubMed]

Paulus, M.

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Rakic, A. D.

Raza, S.

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Ringe, E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Rodríguez-Oliveros, R.

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Sánchez-Gil, J. A.

Sauvan, C.

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Schatz, G.

E. Coronado and G. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

Scheel, S.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
[Crossref]

Schell, A. W.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Scherman, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

Schlather, A. E.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Schotland, J. C.

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
[Crossref]

Senior, T. B. A.

J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Sharma, J.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Shegai, T.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Simic, A.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Slutsky, B.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Sndergaard, T.

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Stevenson, A. F.

A. F. Stevenson, “Relations between the transmitting and receiving properties of antennas,” Quart. Appl. Math. 5, 369–384 (1948).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Straubel, J.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Suttorp, L. G.

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House Publishers, 1995).

Teulle, A.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Toscano, G.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Ueno, K.

Uslenghi, P. L. E.

J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).

Viarbitskaya, S.

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Vlack, C. V.

C. V. Vlack, P. Yao, and S. Hughes, “Optical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides,” Phys. Rev. B 83, 245404 (2011).
[Crossref]

Vogel, W.

W. Vogel and D.-G. Welsh, Quantum Optics (Wiley-VCH, 2006), 3rd ed.
[Crossref]

Welsch, D.-G.

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
[Crossref]

Welsh, D.-G.

W. Vogel and D.-G. Welsh, Quantum Optics (Wiley-VCH, 2006), 3rd ed.
[Crossref]

Werra, J. F. M.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Wersäll, M.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Whitmire, K. H.

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Wolff, C.

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Wreidt, T.

A. Doicu, Y. Eremin, and T. Wreidt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Accademic Press, 2000).

Wriedt, T.

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
[Crossref]

Wubs, M.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
[Crossref]

Xu, H.

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

Yang, X.

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

Yao, P.

C. V. Vlack, P. Yao, and S. Hughes, “Optical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides,” Phys. Rev. B 83, 245404 (2011).
[Crossref]

Zengin, G.

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Zhdanov, M.

M. Zhdanov, Integral Transforms in Geophysics (Springer-Verlag, 1988).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

J. Chem. Phys. (1)

E. Coronado and G. Schatz, “Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach,” J. Chem. Phys. 119, 3926–3934 (2003).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. A: Math. Theor. (1)

G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Short-distance expansion for the electromagnetic half-space green’s tensor: general results and an application to radiative lifetime computations,” J. Phys. A: Math. Theor. 42, 275203 (2009).
[Crossref]

J. Phys.: Conf. Ser. (1)

B. Hourahine, K. Holms, and F. Papoff, “Accurate near and far field determination for non spherical particles from mie-type theory,” J. Phys.: Conf. Ser. 367, 012010 (2012).

Nano Lett. (3)

M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals,” Nano Lett. 15, 2751–2755 (2015).
[Crossref] [PubMed]

N. S. King, L. Liu, X. Yang, B. Cerjan, H. O. Everitt, P. Nordlander, and N. J. Halas, “Fano resonant aluminum nanoclusters for plasmonic colorimetric sensing,” Nano Lett. 9, 10628–10636 (2015).

A. W. Schell, P. Engel, J. F. M. Werra, C. Wolff, K. Busch, and O. Benson, “Scanning single quantum emitter fluorescence lifetime imaging: Quantitative analysis of the local density of photonic states,” Nano Lett. 14, 2623–2627 (2014).
[Crossref] [PubMed]

Nat. Commun. (3)

G. Toscano, J. Straubel, A. Kwiatkowski, C. Rockstuhl, F. Evers, H. Xu, N. A. Mortensen, and M. Wubs, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics,” Nat. Commun. 6, 7132 (2015).
[Crossref] [PubMed]

W. Zhu, R. Esteban, A. G. Borisov, J. J. Baumberg, P. Nordlander, H. J. Lezec, J. Aizpurua, and K. B. Crozier, “Quantum mechanical effects in plasmonic structures with subnanometre gaps,” Nat. Commun. 7, 11495 (2016).
[Crossref] [PubMed]

N. Mortensen, S. Raza, M. Wubs, T. Sndergaard, and S. Bozhevolnyi, “A generalized non-local optical response theory for plasmonic nanostructures,” Nat. Commun. 5, 3809 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Viarbitskaya, A. Teulle, R. Marty, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms,” Nat. Mater. 12, 426–432 (2013).
[Crossref] [PubMed]

Nat. Photon. (1)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Cirací, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large purcell enhancement in plasmonic nanoantennas,” Nat. Photon. 8, 835–840 (2014).
[Crossref]

Nature (3)

R. Chikkaraddy, B. de Nijs, F. Benz, S. Barrow, O. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535, 127–130 (2016).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1113 (2009).
[Crossref] [PubMed]

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

E. Eremina, Y. Eremin, and T. Wriedt, “Analysis of the light scattering properties of a gold nanorod on a plane surface via discrete sources method,” Opt. Commun. 273, 278–285 (2007).
[Crossref]

D. McArthur, B. Hourahine, and F. Papoff, “Coherent control of plasmons in nanoparticles with nonlocal response,” Opt. Commun. 382, 258–265 (2017).
[Crossref]

Opt. Express (4)

Phys. Rev. A (6)

G. S. Agarwal, “Quantum electrodynamics in the presence of dielectrics and conductors. i. electromagnetic-field response functions and black-body fluctuations in finite geometries,” Phys. Rev. A 11, 230–242 (1975).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “QED commutation relations for inhomogeneous kramers-kronig dielectrics,” Phys. Rev. A 58, 700–706 (1998).
[Crossref]

S. Scheel, L. Knöll, and D.-G. Welsch, “Spontaneous decay of an excited atom in an absorbing dielectric,” Phys. Rev. A 60, 4094–4104 (1999).
[Crossref]

H. T. Dung, S. Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, “Electromagnetic-field quantization and spontaneous decay in left-handed media,” Phys. Rev. A 68, 043816 (2003).
[Crossref]

M. Wubs, L. G. Suttorp, and A. Lagendijk, “Multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics,” Phys. Rev. A 70, 053823 (2004).
[Crossref]

M. B. Doost, W. Langbein, and E. A. Muljarov, “Resonant-state expansion applied to three-dimensional open optical systems,” Phys. Rev. A 90, 013834 (2014).
[Crossref]

Phys. Rev. B (3)

G. Boudarham and M. Kociak, “Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes,” Phys. Rev. B 85, 245447 (2012).
[Crossref]

C. V. Vlack, P. Yao, and S. Hughes, “Optical forces between coupled plasmonic nanoparticles near metal surfaces and negative index material waveguides,” Phys. Rev. B 83, 245404 (2011).
[Crossref]

F. G. de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B 60, 6086 (1999).
[Crossref]

Phys. Rev. E (1)

M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of the green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000).
[Crossref]

Phys. Rev. Lett. (3)

F. J. G. de Abajo and M. Kociak, “Probing the photonic local density of states with electron energy loss spectroscopy,” Phys. Rev. Lett. 100, 106804 (2008).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

C. Sauvan, J. Hugonin, I. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Phys. Sci. Int. Jour. (1)

D. McArthur, B. Hourahine, and F. Papoff, “Evaluation of e. m. fields and energy transport in metallic nanoparticles with near field excitation,” Phys. Sci. Int. Jour. 4, 565–575 (2014).
[Crossref]

Quart. Appl. Math. (1)

A. F. Stevenson, “Relations between the transmitting and receiving properties of antennas,” Quart. Appl. Math. 5, 369–384 (1948).
[Crossref]

Sci. Rep. (1)

F. Papoff, D. McArthur, and B. Hourahine, “Coherent control of radiation patterns of nonlinear multiphoton processes in nanoparticles,” Sci. Rep. 5, 12040 (2015).
[Crossref] [PubMed]

Other (6)

L. Novotny and B. Hecht, eds., Principles of Nano-Optics, 2nd ed. (Cambridge University Press, 2012).
[Crossref]

W. Vogel and D.-G. Welsh, Quantum Optics (Wiley-VCH, 2006), 3rd ed.
[Crossref]

A. Taflove, Computational Electrodynamics: The Finite Difference Time-Domain Method (Artech House Publishers, 1995).

J. J. Bowman, T. B. A. Senior, P. L. E. Uslenghi, and J. S. Asvestas, Electromagnetic and Acoustic Scattering by Simple Shapes (North-Holland Pub. Co., 1970).

A. Doicu, Y. Eremin, and T. Wreidt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Accademic Press, 2000).

M. Zhdanov, Integral Transforms in Geophysics (Springer-Verlag, 1988).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustrations of the nanostructures considered in this paper. On the left-hand side is shown an Al particle held above a substrate by a tip (not shown) as done in aperture-less Scanning Near field Microscopy. We consider Al and SiO2 substrates with thickness such that reflection of light from the lower surface is negligible. On the right-hand side, we show two nanoparticles with the lower particle in the same position as the particle’s image in the left-hand side.
Fig. 2
Fig. 2 (a) Far field enhancement for dipole emitters with linear polarization perpendicular to the substrate at 3 nm from the nanorod shown in Fig. 1 and at 2 nm from an Al substrate. Dipole emitters with linear polarization parallel to the substrate couple very weakly to the nanostructures and are not shown. We plot the far field enhancement with respect to vacuum, I/I0 over the detection cone with 60° semi-angle (solid green line) and over the upper semi-space (dashed orange line), where I is the far field intensity collected in presence of the nanostructures and I0 is the corresponding far field intensity collected in free space. The enhancement over the cone can be larger than the one over the upper semi-space due to a reshaping of the radiation patterns. (b) Far field enhancements as in (a), but with a fused silica (SiO2) substrate. (c) Far field enhancement with respect to vacuum for dipole emitters at 3 nm from a single Al nanorod. (d) Far field enhancement with respect to vacuum for a pair of coaxial Al nanorods with dipole emitters at 3 nm from one particle and at 7 nm from the other. Insets show illustrated schematics of the nanostructures relevant to each figure.
Fig. 3
Fig. 3 (a–d) Mode landscapes for the nanostructures in Figs. 2(a)–2(d). The mode traces in these three dimensional plots are an intrinsic characteristic of the four nanostructures and do not depend on the incident field. The sensitivity (vertical axis) of a trace is the reciprocal of the denominator of the projector into the mode corresponding to the trace. The higher is the sensitivity, the higher is the corresponding mode amplitude for a given value of the coupling between the dipole field and the mode, which is the numerator of the projector into the mode. The two horizontal axes are the wavelength and the mode number, with mode pairs ordered according to the surface correlation between the internal and scattering mode of the pair. The traces are color coded according to the relative amount of energy radiated by each mode into the detection cone, Pn, normalized by the corresponding energy radiated in free space, P0. The modes in (a–b) include the effect of the substrates at all orders and are not the same as the modes of the single particle shown in (c). We can clearly identify the peaks in the far field enhancement shown in Fig. 2 with the resonant modes shown in this figure. Note that at short wavelengths only the resonant mode for the rod in front of the Al substrate, (a), is able to transport energy into the detection cone, while the corresponding modes in (b), SiO2 substrate, (c), single nanorod, and (d), two particles, are radiating mostly sideways.
Fig. 4
Fig. 4 Radiation patterns of the resonant modes in the upper half-space for: (a) Al substrate at 223 nm; (b) SiO2 substrate at 218 nm; (c) single nanorod at 213 nm; (d) two particles at 216 nm. The shaded area shows the acceptance angle of the detector. Note the strong effect of the substrate on the radiation pattern of the resonant mode: only for the Al substrate is there significant radiation within the detection cone.
Fig. 5
Fig. 5 (a–d) Solid blue lines: Purcell factors for the nanostructures in Figs. 2(a)–2(d). (a–b) Dashed red lines: Purcell factors for the substrates without the nanorod. The resonant modes dominate the Purcell factors, but substrates and non-resonant modes determine the non-resonant background that can be seen at all wavelengths. The Q factors for the resonances are: (a) 107.9, 54; (b) 25.5, 15.2; (c) 14.4, 8.6; (d) 9.4, 11.6
Fig. 6
Fig. 6 Mode landscapes color coded according to the modal contributions to the Purcell factors, shown in Figs. 5(a)–5(d), for the same nanostructures in Figs. 2(a)–2(d). The modal decompositions of the scattering Green’s functions are found using the projectors. The axes of the plots are the same as those in Fig. 3.
Fig. 7
Fig. 7 Solid blue lines (a–d): Photonic Lamb shifts of the emitter’s resonance frequency divided by the decay rate Γ0 for the nanostructures in Fig. 2. Dashed red lines (a–b): Photonic Lamb shifts for the substrates without the nanorod. The contribution of the resonant modes to the Photonic Lamb shifts has a dispersive type behaviour that is a consequence of causality. This is very clear for the single particle (c), while for the other structures it is partially masked by the non resonant modes.
Fig. 8
Fig. 8 Far field enhancement for the same nanostructures as in Fig. 2 with: a 20 nm gap between the nanorod and substrates (a–b); a 40 nm gap between the pair of nanorods (d); and in all cases the dipole is 18 nm from the nanorod. The qualitative features in this figure are similar to those shown in Fig. 2, but the antenna effect of the nanorods is much weaker due to the larger gaps.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( E ( x ) H ( x ) ) = ( G EP ( ω ; x , x ) G EM ( ω ; x , x ) G HP ( ω ; x , x ) G HM ( ω ; x , x ) ) V ( P ( x ) μ 0 μ r M ( x ) ) .
F j ( x ) = 𝒢 j ( x , x ) V j D ( x ) .
f I / S ( σ ) = Π I / S ( σ , σ ) V 0 c j F j ( σ ) .
Θ q ( x ) F ( x ) = c q 𝒢 q ( x , σ ) V 0 X F ( σ ) ,
𝒢 q S ( x , x ) = c q 𝒢 q ( x , σ ) V 0 X [ ( 1 δ 0 q ) Π l ( σ , σ ) + δ 0 , q Π S ( σ , σ ) ] V 0 j = 0 N c j 𝒢 j ( σ , x ) ,
F ( x ) = [ 𝒢 q ( x , x ) + 𝒢 q S ( x , x ) ] V D ( x ) .
Γ ( ω ; P , x ) = 2 P T ( x ) Im [ G 0 EP ( ω ; x , x ) + G 0 EP ; S ( ω ; x , x ) ] P ( x ) ,
δ ω 1 ( P , x ) = 1 P T ( x ) Re [ G 0 EP , R + G 0 EP ; S ( ω ; x , x ) ] P ( x ) ,
a n i = i n f 0 i n i n , a n s = s n f 0 s n s n ,
Π I ( σ , σ ) = n i n ( σ ) i n ( σ ) i n i n , Π S ( σ , σ ) = n s n ( σ ) s n ( σ ) s n s n ,
[ 1 I S S I S S ] ,
I S = diag { C 1 , , C N } + [ 0 I 1 S N I N S 1 0 ] ,
S S = 1 + [ S ^ 1 S ^ 1 S 1 S N S N S 1 S ^ N S ^ N ] ,
G EP ( ω ; x , x ) = G EP ( ω ; x , x ) T
G HM ( ω ; x , x ) = G HM ( ω ; x , x ) T
G EM ( ω ; x , x ) = G HP ( ω ; x , x ) T .

Metrics