Abstract

We study a 3D-printed hollow core terahertz (THz) Bragg waveguide for resonant surface sensing applications. We demonstrate theoretically and confirm experimentally that by introducing a defect in the first layer of the Bragg reflector, thereby causing anticrossing between the dispersion relations of the core-guided mode and the defect mode, we can create a sharp transmission dip in the waveguide transmission spectrum. By tracking changes in the spectral position of the narrow transmission dip, one can build a sensor, which is highly sensitive to the optical properties of the defect layer. To calibrate our sensor, we use PMMA layers of various thicknesses deposited onto the waveguide core surface. The measured sensitivity to changes in the defect layer thickness is found to be 0.1 GHz/μm. Then, we explore THz resonant surface sensing using α-lactose monohydrate powder as an analyte. We employ a rotating THz Bragg fiber and a semi-automatic powder feeder to explore the limit of the analyte thickness detection using a surface modality. We demonstrate experimentally that powder layer thickness variations as small as 3μm can be reliably detected with our sensor. Finally, we present a comparative study of the time-domain spectroscopy versus continuous wave THz systems supplemented with THz imaging for resonant surface sensing applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed hollow-core photonic Bragg fiber for surface sensing applications

Jingwen Li, Hang Qu, and Maksim Skorobogatiy
Opt. Express 24(14) 15687-15701 (2016)

Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide

Xiaomei Shi, Jianyuan Qin, and Zhanghua Han
Opt. Express 25(1) 278-283 (2017)

Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides

Borwen You, Ja-Yu Lu, Jia-Hong Liou, Chin-Ping Yu, Hao-Zai Chen, Tze-An Liu, and Jin-Long Peng
Opt. Express 18(18) 19353-19360 (2010)

References

  • View by:
  • |
  • |
  • |

  1. M. Zourob, S. Elwary, and A. Turner, Principles of bacterial detection: biosensors, recognition receptors and microsystems (Springer, 2008).
  2. X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref]
  4. J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
    [Crossref]
  5. W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
    [Crossref]
  6. A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
    [Crossref]
  7. A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
    [Crossref]
  8. M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
    [Crossref]
  9. A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
    [Crossref]
  10. A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344 (2012).
    [Crossref]
  11. B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
    [Crossref]
  12. C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref]
  13. B. You and J. Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
    [Crossref]
  14. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 23, 27204–27212 (2015).
  15. R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
    [Crossref]
  16. R. Singh, A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
    [Crossref]
  17. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
    [Crossref]
  18. J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
    [Crossref]
  19. P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
    [Crossref]
  20. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
    [Crossref]
  21. A. Argyros, I. M. Bassett, M. A. Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express 12(12), 2688–2698 (2004).
    [Crossref]
  22. M. Skorobogatiy and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University, 2009).
  23. T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
    [Crossref]
  24. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Design of dispersion-compensating Bragg fiber with an ultrahigh figure of merit,” Opt. Lett. 30(15), 1917–1919 (2005).
    [Crossref]
  25. A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
    [Crossref]
  26. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
    [Crossref]
  27. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
    [Crossref]
  28. F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
    [Crossref]
  29. M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).
  30. A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
    [Crossref]
  31. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
    [Crossref]
  32. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric and transverse-magnetic modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
    [Crossref]
  33. A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
    [Crossref]
  34. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [Crossref]
  35. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
    [Crossref]
  36. K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).
  37. H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
    [Crossref]
  38. W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
    [Crossref]
  39. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref]
  40. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  41. W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
    [Crossref]
  42. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  43. T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
    [Crossref]
  44. P. Kužel, H. Němec, F. Kadlec, C. Kadlec, P. Kuzel, H. Nemec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Express 18(15), 15338–15348 (2010).
    [Crossref]

2016 (5)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
[Crossref]

B. You and J. Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
[Crossref]

2015 (2)

2014 (3)

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

2013 (3)

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 85(2), 487–508 (2013).
[Crossref]

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
[Crossref]

2012 (2)

2011 (4)

R. Singh, A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (5)

2009 (4)

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[Crossref]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric and transverse-magnetic modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

A. L. Bingham and D. Grischkowsky, “Terahertz two-dimensional high-Q photonic crystal waveguide cavities,” Opt. Lett. 33(4), 348–350 (2008).
[Crossref]

2007 (2)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

2006 (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Design of dispersion-compensating Bragg fiber with an ultrahigh figure of merit,” Opt. Lett. 30(15), 1917–1919 (2005).
[Crossref]

2004 (1)

2003 (2)

2002 (1)

K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).

2001 (1)

2000 (1)

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

1997 (1)

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Al-Naib, A. I.

Argyros, A.

Astley, V.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bassett, I. M.

Beigang, R.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Bentley, W. E.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Bingham, A. L.

Blake, G. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Blue, R.

A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
[Crossref]

Bock, W. J.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Brown, E. R.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Campopiano, S.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Cao, W.

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref]

Chang, H. C.

Chen, H. Z.

Chen, L.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Chen, P.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Chen, Y.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Chinnappan, R.

Chou, S. Y.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Cojocari, O.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Cong, L.

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cusano, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Cutolo, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Dasgupta, S.

Davis, C. C.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

DeLisa, M. P.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Deninger, A.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Desevedavy, F.

Dudus, A.

A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
[Crossref]

Dupuis, A.

Earley, S.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Eijkelenborg, M. A.

Ellrich, F.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Engeness, T. D.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ferguson, B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Fink, Y.

Gaidis, M. C.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Girard, M.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Grischkowsky, D.

Grüninger, M.

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Guerboukha, H.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Güsten, R.

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Hassani, A.

Hemberger, J.

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Iadicicco, A.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Ibanescu, M.

Inoue, H.

Jacobs, S.

Jacobs, S. A.

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Ji, W. B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

Joannopoulos, J. D.

Johnson, S. G.

Jonuscheit, J.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Kadlec, C.

Kadlec, F.

Kawase, K.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

R. Singh, A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Kuzel, P.

Kužel, P.

Lai, C. H.

Large, M. C. J.

Lee, K. S.

K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).

Lewis, R. A.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Li, J.

Lin, B.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

Liou, J. H.

Liu, H. B.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Liu, J.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Liu, T. A.

Lu, J. Y.

Lu, T. M.

K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).

Ma, T.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Markov, A.

Marx, J.

Mayorga, I. C.

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Mazhorova, A.

McIntosh, K. A.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Mendis, R.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric and transverse-magnetic modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref]

Miles, R. E.

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Mittleman, D. M.

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric and transverse-magnetic modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

Molter, D.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Naftaly, M.

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Naib, I. A.

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref]

Nathan, M. I.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Nemec, H.

Ng, A.

Ng, C. L.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

O’Hara, J. F.

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Pal, B. P.

Paladino, D.

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Peng, J. L.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Pilevar, S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Plopper, G.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Qu, H.

Rettich, F.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Roggenbuck, A.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Roze, M.

Schmitz, H.

A. Roggenbuck, K. Thirunavukkuarasu, H. Schmitz, J. Marx, A. Deninger, I. C. Mayorga, R. Güsten, J. Hemberger, and M. Grüninger, “Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer,” J. Opt. Soc. Am. B 29(4), 614–620 (2012).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Shenoy, M. R.

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Shiloach, M.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Singh, R.

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

R. Singh, A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Sirkis, J. S.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Skorobogata, O.

Skorobogatiy, M.

J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
[Crossref]

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
[Crossref]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344 (2012).
[Crossref]

A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[Crossref]

A. Hassani and M. Skorobogatiy, “Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness,” J. Opt. Soc. Am. B 26(8), 1550–1557 (2009).
[Crossref]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
[Crossref]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref]

Soljacic, M.

Squires, A. D.

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Sun, C. K.

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Thirunavukkuarasu, K.

Tjin, S. C.

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

Uttamchandani, D.

A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
[Crossref]

Vieweg, N.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 85(2), 487–508 (2013).
[Crossref]

Watanabe, Y.

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Weinland, T.

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Weisberg, O.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Williamson, F.

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

Withayachumnankul, W.

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref]

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 85(2), 487–508 (2013).
[Crossref]

Yahyapour, M.

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

You, B.

Yu, C. P.

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Zhang, W.

Zhang, X.

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

Zhang, X. C.

K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).

Zhang, Z.

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Zhu, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zourob, M.

Adv. Opt. Mater. (1)

T. Ma, H. Guerboukha, M. Girard, A. D. Squires, R. A. Lewis, and M. Skorobogatiy, “3D printed hollow-core terahertz optical waveguides with hyperuniform disordered dielectric reflectors,” Adv. Opt. Mater. 6, 1 (2016).
[Crossref]

Anal. Chem. (2)

X. D. Wang and O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 85(2), 487–508 (2013).
[Crossref]

M. P. DeLisa, Z. Zhang, M. Shiloach, S. Pilevar, C. C. Davis, J. S. Sirkis, and W. E. Bentley, “Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor,” Anal. Chem. 72(13), 2895–2900 (2000).
[Crossref]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref]

Appl. Phys. Lett. (4)

R. Singh, W. Cao, I. A. Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105(17), 171101 (2014).
[Crossref]

P. Chen, G. A. Blake, M. C. Gaidis, E. R. Brown, K. A. McIntosh, S. Y. Chou, M. I. Nathan, and F. Williamson, “Spectroscopic applications and frequency locking of THz photomixing with distributed Bragg-reflector diode lasers in low-temperature-grown GaAs,” Appl. Phys. Lett. 71(12), 1601–1603 (1997).
[Crossref]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95(17), 171113 (2009).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Biosens. Bioelectron. (1)

H. B. Liu, G. Plopper, S. Earley, Y. Chen, B. Ferguson, and X. Zhang, “Sensing minute changes in biological cell monolayers with THz differential time-domain spectroscopy,” Biosens. Bioelectron. 22(6), 1075–1080 (2007).
[Crossref]

IEEE Circuits Devices Mag. (1)

K. S. Lee, T. M. Lu, and X. C. Zhang, “Tera tool,” IEEE Circuits Devices Mag. 18, 23–28 (2002).

IEEE Sens. J. (1)

A. Dudus, R. Blue, and D. Uttamchandani, “Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics,” IEEE Sens. J. 13(5), 1594–1601 (2013).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Yahyapour, N. Vieweg, A. Roggenbuck, F. Rettich, O. Cojocari, and A. Deninger, “A Flexible phase-insensitive system for broadband CW-terahertz spectroscopy and imaging,” IEEE Trans. Terahertz Sci. Technol. 6, 670–673 (2016).

J. Infrared Millim. Terahertz Waves (1)

W. Withayachumnankul and M. Naftaly, “Fundamentals of measurement in terahertz time-domain spectroscopy,” J. Infrared Millim. Terahertz Waves 35(8), 610–637 (2014).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), R301–R310 (2006).
[Crossref]

Laser Photonics Rev. (1)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging-modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Opt. Express (16)

P. Kužel, H. Němec, F. Kadlec, C. Kadlec, P. Kuzel, H. Nemec, F. Kadlec, and C. Kadlec, “Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy,” Opt. Express 18(15), 15338–15348 (2010).
[Crossref]

A. Dupuis, A. Mazhorova, F. Desevedavy, M. Roze, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18(13), 13813–13828 (2010).
[Crossref]

J. Li, H. Qu, and M. Skorobogatiy, “Squeezed hollow-core photonic Bragg fiber for surface sensing applications,” Opt. Express 24(14), 15687–15701 (2016).
[Crossref]

T. D. Engeness, M. Ibanescu, S. G. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, “Dispersion tailoring and compensation by modal interactions in OmniGuide fibers,” Opt. Express 11(10), 1175–1196 (2003).
[Crossref]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric and transverse-magnetic modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref]

W. Withayachumnankul, J. F. O’Hara, W. Cao, I. A. Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22(1), 972–986 (2014).
[Crossref]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref]

A. Mazhorova, A. Markov, A. Ng, R. Chinnappan, O. Skorobogata, M. Zourob, and M. Skorobogatiy, “Label-free bacteria detection using evanescent mode of a suspended core terahertz fiber,” Opt. Express 20(5), 5344 (2012).
[Crossref]

B. You, J. Y. Lu, J. H. Liou, C. P. Yu, H. Z. Chen, T. A. Liu, and J. L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(18), 19353–19360 (2010).
[Crossref]

C. H. Lai, B. You, J. Y. Lu, T. A. Liu, J. L. Peng, C. K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref]

B. You and J. Y. Lu, “Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide,” Opt. Express 24(16), 18013–18023 (2016).
[Crossref]

B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 23, 27204–27212 (2015).

J. Li, H. Qu, and M. Skorobogatiy, “Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Opt. Express 23(18), 22963–22976 (2015).
[Crossref]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001).
[Crossref]

A. Argyros, I. M. Bassett, M. A. Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express 12(12), 2688–2698 (2004).
[Crossref]

R. Singh, A. I. Al-Naib, M. Koch, and W. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19(7), 6312–6319 (2011).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95(8), 1658–1665 (2007).
[Crossref]

Rev. Sci. Instrum. (1)

F. Ellrich, T. Weinland, D. Molter, J. Jonuscheit, and R. Beigang, “Compact fiber-coupled terahertz spectroscopy system pumped at 800 nm wavelength,” Rev. Sci. Instrum. 82(5), 053102 (2011).
[Crossref]

Sci. Rep. (1)

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6, 22027 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

A. Iadicicco, D. Paladino, S. Campopiano, W. J. Bock, A. Cutolo, and A. Cusano, “Evanescent wave sensor based on permanently bent single mode optical fiber,” Sens. Actuators B Chem. 155(2), 903–908 (2011).
[Crossref]

Sensors (Basel) (1)

W. B. Ji, S. C. Tjin, B. Lin, and C. L. Ng, “Highly sensitive refractive index sensor based on adiabatically tapered microfiber long period gratings,” Sensors (Basel) 13(10), 14055–14063 (2013).
[Crossref]

Other (2)

M. Zourob, S. Elwary, and A. Turner, Principles of bacterial detection: biosensors, recognition receptors and microsystems (Springer, 2008).

M. Skorobogatiy and J. Yang, Fundamentals of photonic crystal guiding (Cambridge University, 2009).

Supplementary Material (2)

NameDescription
» Visualization 1: MOV (7552 KB)      Rotation setup
» Visualization 2: MOV (11861 KB)      Semiautomatic feeder

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic of the THz Bragg waveguide. The gray region and white region represent the high refractive index layer (printing resin) and low refractive index layer (air), respectively. Both the resin and air layer have a thickness of 512μm. The multilayers are kept together with micro-bridge structures distributed uniformly along the waveguide cross section. The number of bilayers is 10. Two mounts at the waveguide periphery are introduced for convenient loading and aligning of the waveguide in the U-shaped holder. The light blue region is a defect layer in the Bragg reflector. (b). Band diagram of the Bragg waveguide with a core diameter of 4.5mm. The yellow solid line illustrates the air light line. Color of each dot indicates the fraction of power guided in the hollow core. The red-colored curve represents the HE11-like mode. A typical defect mode due to the presence of the bridges is shown in the insert.

Fig. 2
Fig. 2

(a) Band diagram of the Bragg waveguide with a defect layer (thickness: 300μm). The two white dashed ellipses highlight the anticrossing regions between the core-guided mode and the defect modes. Insert: magnified view of the anticrossing region. In order to show the anticrossing phenomenon clearly, we use bigger dots to represent the core-guided HE11 mode and the defect modes. The black circles refer to the different types of modes guided in the bandgap. (b) Propagation loss of the HE11 mode. The two sharp loss peaks inside of the bandgap correspond to the two anticrossing regions highlighted as dashed white ellipses in (a). (c) The longitudinal flux distributions for those modes highlighted in the band diagram. A: Core-guided HE11 mode. B: Hybridized mode. C: Defect modes localized in the immediate vicinity of the defect layer at the waveguide core/reflector interface.

Fig. 3
Fig. 3

(a) Schematic of the THz-TDS setup for characterizing the transmission properties of the THz Bragg waveguides. A mirror assembly (rail 2) can translate the output focal plane to accommodate the waveguides of various lengths. The femtosecond laser pulse is shown in red and the THz pulse is shown in green. PM1: fixed parabolic mirror with a focus at the waveguide input facet. PM2: movable parabolic mirror, which is displaced every time when the waveguide section is removed in order to keep the focal point at the waveguide output facet. (b) Three sections of the Bragg waveguides (white) mounted in the U-shaped holders (black). Both the input facet and the output facet of the Bragg waveguides feature an aperture with the size equal to that of the waveguide core. (c) Close-up view of one section of Bragg waveguide mounted in the U-shaped holder. (d) Cross section of the printed Bragg waveguide with a uniformly periodic reflector. (e) Magnified view of the micro-bridge. (f) Magnified view of the high refractive index resin layer.

Fig. 4
Fig. 4

(a) Measured transmission spectra of the THz Bragg waveguides with uniform periodic reflector for different waveguide lengths (2.5cm, 5cm, 7.5cm, 10cm, and 12.5cm). The bandwidth (FWHM) of the fundamental bandgap of a Bragg waveguide is ~45GHz. (b) Calculated propagation loss of the hollow-core Bragg waveguide using the cutback method.

Fig. 5
Fig. 5

(a) Measured transmission spectra of the THz Bragg waveguide featuring a defect layer of different thicknesses (200μm, 300μm, and 400μm). (b) Experimental and theoretical spectral shifts of the two transmission dips as a function of the defect layer thickness.

Fig. 6
Fig. 6

(a) Measured transmission spectra of the THz Bragg waveguide (with a 300μm defect layer), when PMMA films of different thicknesses (50μm and 100μm) are inserted into the waveguide core. (b) Experimental and theoretical spectral shift of the transmission dip found at the right edge of the bandgap as a function of the PMMA layer thickness.

Fig. 7
Fig. 7

(a) Schematic of the setup used for monitoring of the thickness of powder analytes deposited on the inner surface of a rotating Bragg waveguide (see Visualization 1). (b) Semi-automatic loader used for feeding lactose powders into the rotating waveguide (see Visualization 2). (c) Measured transmission spectra of the THz Bragg waveguide (with a 300μm defect layer), when 0.042g α-lactose monohydrate powder analyte (thickness of ~65μm) is deposited uniformly onto the waveguide inner surface.

Fig. 8
Fig. 8

(a) Schematic of the fiber-coupled THz modal imaging system. (b) Transmission spectrum of the Bragg waveguide (with a 300μm defect layer). (c) Spatial electric field distribution | E x | of the four modes marked in (b) acquired at the output of the waveguide.

Fig. 9
Fig. 9

(a) Schematic of the THz-CW spectroscopy setup for characterizing the transmission spectra of the THz Bragg waveguides. Comparison of the transmission spectra of the Bragg waveguide (with a 400μm defect layer) measured using (b) THz-TDS and (c) THz-CW setups.

Fig. 10
Fig. 10

(a) Measured transmission spectra of the THz Bragg waveguide (with a 300μm defect), when different amounts of lactose powders are loaded into the core (corresponding analyte layer thicknesses are 0μm, 3μm, 6μm, 12μm). (b) Experimental and theoretical spectral shift of the transmission dip found at the right edge of the bandgap as a function of the layer thickness.

Fig. 11
Fig. 11

Optical characterizations of the photosensitive resin using cutback method. (a) 3D printed resin samples of various lengths mounted in the holder. (b) Temporal traces of the THz pulses at the output of the resin slices (plotted with a vertical offset for clarity), (c) transmission spectra, (d) unwrapped phases (relative to the reference), (e) resin absorption loss and the polynomial fit (p = 2), (f) resin refractive index and the polynomial fit (p = 1).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(ω,L)= E t E r =| T(ω,L) |exp[iφ(ω,L)] | T(ω,L) |= C in C out exp[ α(ω)L 2 ] . φ(ω,L)= ω c ( n r (ω)1)L
α(ω)[c m 1 ]=0.64+13.44 (ω[THz]) 2 ,
n(ω)=1.6540.07ω[THz] .

Metrics