Abstract

In this paper, we report the mechanical tuning of the optical and mechanical modes in the hollow bottle-like microresonator (BLMR). The optical modes with a quality factor of 1.55 × 108 and mechanical modes with a quality factor of 2.5 × 103 were demonstrated in such microresonators. By stretching the microresonator, the optical modes can be tuned over one free spectral range, as large as 917 GHz (~ 7.3 nm). Meanwhile, the range of frequency tuning of mechanical modes can be as large as 1 MHz, which is about 2.9% of the mode frequency. This effective approach to tune the optomechanical cavity can be used for the tunable photon-phonon conversion and the synchronization of mechanical oscillators in separated optomechanical systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Raman laser in a hollow bottle-like microresonator

Yuan Chen, Zhong-Hao Zhou, Chang-Ling Zou, Zhen Shen, Guang-Can Guo, and Chun-Hua Dong
Opt. Express 25(14) 16879-16887 (2017)

Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring

Guoqiang Gu, Changlei Guo, Zhiping Cai, Huiying Xu, Lujian Chen, Hongyan Fu, Kaijun Che, Minghui Hong, Shufeng Sun, and Fengping Li
Appl. Opt. 53(32) 7819-7824 (2014)

Hollow-bottle optical microresonators

G. Senthil Murugan, M. N. Petrovich, Y. Jung, J. S. Wilkinson, and M. N. Zervas
Opt. Express 19(21) 20773-20784 (2011)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321(5893), 1172–1176 (2008).
    [Crossref] [PubMed]
  2. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
    [Crossref]
  3. A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
    [Crossref]
  4. Y.-S. Park and H.-L. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
    [Crossref]
  5. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
    [Crossref] [PubMed]
  6. Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
    [Crossref] [PubMed]
  7. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
    [Crossref] [PubMed]
  8. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
    [Crossref] [PubMed]
  9. C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
    [Crossref] [PubMed]
  10. J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
    [Crossref] [PubMed]
  11. C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
    [Crossref]
  12. Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
    [Crossref]
  13. F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
    [Crossref] [PubMed]
  14. R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
    [Crossref] [PubMed]
  15. R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
    [Crossref]
  16. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011).
    [Crossref] [PubMed]
  17. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
    [Crossref] [PubMed]
  18. K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
    [Crossref]
  19. T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
    [Crossref]
  20. Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
    [Crossref]
  21. Q. Lu, J. Liao, S. Liu, X. Wu, L.-Y. Liu, and L. Xu, “Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing,” Opt. Express 24(18), 20855–20861 (2016).
    [Crossref] [PubMed]
  22. J. P. Rezac and A. T. Rosenberger, “Locking a microsphere whispering-gallery mode to a laser,” Opt. Express 8(11), 605–610 (2001).
    [Crossref] [PubMed]
  23. A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
    [Crossref]
  24. K. N. Dinyari, R. J. Barbour, and H.-L. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966 (2011).
    [Crossref] [PubMed]
  25. Y. Yang, S. Saurabh, J. Ward, and Nic S. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
    [Crossref] [PubMed]
  26. T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
    [Crossref] [PubMed]
  27. K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
    [Crossref] [PubMed]
  28. O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
    [Crossref]
  29. Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
    [Crossref]
  30. M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
    [Crossref]
  31. Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
    [Crossref] [PubMed]
  32. Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
    [Crossref]
  33. J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
    [Crossref] [PubMed]
  34. C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7(4), 299–301 (2009).
    [Crossref]
  35. M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
    [Crossref] [PubMed]
  36. C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41(3), 551–554 (2016).
    [Crossref] [PubMed]
  37. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
    [Crossref]
  38. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
    [Crossref]
  39. W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
    [Crossref]
  40. T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
    [Crossref]
  41. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
    [Crossref]
  42. Y. S. Park and H.-L. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
    [Crossref] [PubMed]

2016 (10)

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

C. L. Linslal, M. Kailasnath, S. Mathew, T. K. Nideep, P. Radhakrishnan, V. P. N. Nampoori, and C. P. G. Vallabhan, “Tuning whispering gallery lasing modes from polymer fibers under tensile strain,” Opt. Lett. 41(3), 551–554 (2016).
[Crossref] [PubMed]

T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
[Crossref] [PubMed]

Q. Lu, J. Liao, S. Liu, X. Wu, L.-Y. Liu, and L. Xu, “Precise measurement of micro bubble resonator thickness by internal aerostatic pressure sensing,” Opt. Express 24(18), 20855–20861 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Yang, S. Saurabh, J. Ward, and Nic S. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

2014 (2)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “Aerostatically tunable optomechanical oscillators,” Opt. Express 22, 1267–1276 (2014).
[Crossref] [PubMed]

2013 (1)

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

2012 (2)

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

2011 (5)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express 19(3), 2782–2790 (2011).
[Crossref] [PubMed]

K. N. Dinyari, R. J. Barbour, and H.-L. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966 (2011).
[Crossref] [PubMed]

R. Henze, T. Seifert, J. Ward, and O. Benson, “Tuning whispering gallery modes using internal aerostatic pressure,” Opt. Lett. 36(23), 4536–4538 (2011).
[Crossref] [PubMed]

2010 (4)

T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Super free spectral range tunable optical microbubble resonator,” Opt. Lett. 35(11), 1866–1868 (2010).
[Crossref] [PubMed]

2009 (5)

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7(4), 299–301 (2009).
[Crossref]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

Y.-S. Park and H.-L. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

2008 (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

2007 (2)

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[Crossref]

Y. S. Park and H.-L. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
[Crossref] [PubMed]

2005 (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

2001 (3)

1998 (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

Alú, A.

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

Anetsberger, G.

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

Arcizer, O.

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

Arnold, S.

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Asano, M.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Ayaz, U. K.

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Bahl, G.

Bao, T.-Y.

Barbour, R. J.

Benson, O.

Chan, J.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

Chen, W.-J.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Chen, Y.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Chormaic, Nic S.

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

Y. Yang, S. Saurabh, J. Ward, and Nic S. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

Cui, J.-M.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Dinyari, K. N.

Dong, C.-H.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7(4), 299–301 (2009).
[Crossref]

Dulashko, Y.

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Fan, X.-D.

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Farca, G.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

Fiore, V.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Guo, G.-C.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
[Crossref] [PubMed]

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7(4), 299–301 (2009).
[Crossref]

Guo, G.-P.

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Han, K.

Han, Z.-F.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Hare, J.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
[Crossref]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Henze, R.

Hill, J. T.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Ikuta, R.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Ilchenko, V. S.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
[Crossref]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Imoto, N.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Ioppolo, T.

T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Kailasnath, M.

Kasumie, S.

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

Kim, J. H.

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
[Crossref]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Kuzyk, M. C.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

Le, V.

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Lee, S.

Lefèvre-Seguin, V.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
[Crossref]

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Li, T.

Liao, J.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

Lin, X.-M.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Linslal, C. L.

Lipson, M.

Liu, L.-Y.

Liu, S.

Liu, Y.-C.

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Long, R.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
[Crossref]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

Lu, Q.

Luan, X.-S.

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Madugani, R.

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

Manipatruni, S.

Marcis, K.

T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
[Crossref]

Mathew, S.

Miri, M.-A.

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

Nampoori, V. P. N.

Naweed, A.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

Nideep, T. K.

Ödemir, S. K.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Ötüen, M. V.

T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

Ötügen, M. V.

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Painter, O.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[Crossref]

Park, Y. S.

Park, Y.-S.

Y.-S. Park and H.-L. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Radhakrishnan, P.

Raimond, J.-M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Rezac, J. P.

Riviere, R.

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

Rosenberger, A. T.

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

J. P. Rezac and A. T. Rosenberger, “Locking a microsphere whispering-gallery mode to a laser,” Opt. Express 8(11), 605–610 (2001).
[Crossref] [PubMed]

Ruesink, F.

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

Saurabh, S.

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

Seifert, T.

Shen, M.-X.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Shen, Z.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Shopova, S. I.

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

Shu, F.-J.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Srinivasan, K.

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[Crossref]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Sumetsky, M.

Sun, F.-W.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Sun, Y.-Z.

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Takeuchi, Y.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Tian, L.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

Vallabhan, C. P. G.

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Verhagen, E.

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

von Klitzing, W.

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy,” Opt. Lett. 26(3), 166–168 (2001).
[Crossref]

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

Wang, H.-L.

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

K. N. Dinyari, R. J. Barbour, and H.-L. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19, 17966 (2011).
[Crossref] [PubMed]

Y.-S. Park and H.-L. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Y. S. Park and H.-L. Wang, “Radiation pressure driven mechanical oscillation in deformed silica microspheres via free-space evanescent excitation,” Opt. Express 15(25), 16471–16477 (2007).
[Crossref] [PubMed]

Ward, J.

Ward, J.-M.

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

White, I. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Wiederhecker, G. S.

Windeler, R. S.

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

Wong, C.-W.

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Wu, C.-S.

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Wu, X.

Xiao, Y.-F.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Xu, L.

Yamamoto, T.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Yang, L.

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Yang, Y.

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

Y. Yang, S. Saurabh, J. Ward, and Nic S. Chormaic, “Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators,” Opt. Lett. 40(8), 1834–1837 (2015).
[Crossref] [PubMed]

Ye, M.-Y.

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Zhang, Y.-L.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
[Crossref] [PubMed]

Zhou, Z.-H.

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Zou, C.-L.

T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
[Crossref] [PubMed]

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

C.-H. Dong, C.-L. Zou, J.-M. Cui, Z.-F. Han, and G.-C. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7(4), 299–301 (2009).
[Crossref]

Zou, X.-B.

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

T. Li, T.-Y. Bao, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, “Long-distance synchronization of unidirectionally cascaded optomechanical systems,” Opt. Express 24(11), 12336–12348 (2016).
[Crossref] [PubMed]

Ann. Phys. (1)

C.-H. Dong, V. Fiore, M. C. Kuzyk, L. Tian, and H.-L. Wang, “Optical wavelength conversion via optomechanical coupling in a silica resonator,” Ann. Phys. 527(1–2), 100–106 (2015).
[Crossref]

Appl. Phys. B (1)

Y. Yang, R. Madugani, S. Kasumie, J.-M. Ward, and Nic S. Chormaic, “Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator,” Appl. Phys. B 122(12), 291 (2016).
[Crossref]

Appl. Phys. Lett. (2)

K. Srinivasan and O. Painter, “Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures,” Appl. Phys. Lett. 90(3), 031114 (2007).
[Crossref]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett. 87(20), 201107 (2005).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

R. Madugani, Y. Yang, J. Ward, V. Le, and Nic S. Chormaic, “Linear laser tuning using a pressure-sensitive microbubble resonator,” IEEE Photon. Technol. Lett. 28(10), 1134–1137 (2016).
[Crossref]

J. Appl. Phys. (2)

T. Ioppolo, M. V. Ötüen, and K. Marcis, “Magnetic field-induced excitation and optical detection of mechanical modes of microspheres,” J. Appl. Phys. 107, 123115 (2010).
[Crossref]

T. Ioppolo, U. K. Ayaz, and M. V. Ötügen, “High-resolution force sensor based on morphology dependent optical resonances of polymeric spheres,” J. Appl. Phys. 105(1), 013535 (2009).
[Crossref]

Laser Photon. Rev. (1)

M. Asano, Y. Takeuchi, W.-J. Chen, Ş. K. Ödemir, R. Ikuta, N. Imoto, L. Yang, and T. Yamamoto, “Observation of optomechanical coupling in a microbottle resonator,” Laser Photon. Rev. 10(4), 603–611 (2016).
[Crossref]

Nat. Commun. (2)

J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, “Coherent optical wavelength conversion via cavity optomechanics,” Nat. Commun. 3, 1196 (2012).
[Crossref] [PubMed]

F. Ruesink, M.-A. Miri, A. Alú, and E. Verhagen, “Nonreciprocity and magnetic-free isolation based on optomechanical interactions,” Nat. Commun. 7, 13662 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, and C.-H. Dong, “Experimental realization of optomechanically induced non-reciprocity,” Nat. Photonics 10(10), 657–661 (2016).
[Crossref]

Nat. Phys. (2)

A. Schliesser, O. Arcizer, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5(7), 509–514 (2009).
[Crossref]

Y.-S. Park and H.-L. Wang, “Resolved-sideband and cryogenic cooling of an optomechanical resonator,” Nat. Phys. 5(7), 489–493 (2009).
[Crossref]

Nature (2)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478(7367), 89–92 (2011).
[Crossref] [PubMed]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69 (2011).
[Crossref] [PubMed]

New J. Phys. (1)

W. von Klitzing, R. Long, V. S. Ilchenko, J. Hare, and V. Lefèvre-Seguin, “Tunable whispering gallery modes for spectroscopy and CQED experiments,” New J. Phys. 3(1), 14 (2001).
[Crossref]

Opt. Commun. (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain-tunable high-Q optical microsphere resonator,” Opt. Commun. 145(1–6), 86–90 (1998).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Photonics Res. (1)

Z. Shen, Z.-H. Zhou, C.-L. Zou, F.-W. Sun, G.-P. Guo, C.-H. Dong, and G.-C. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photonics Res. 3(5), 243–247 (2015).
[Crossref]

Phys. Rev. A. (2)

O. Arcizet, R. Riviere, A. Schliesser, G. Anetsberger, and T. J. Kippenberg, “Cryogenic properties of optomechanical silica microcavities,” Phys. Rev. A. 80(2), 021803(2009).
[Crossref]

A. Naweed, G. Farca, S. I. Shopova, and A. T. Rosenberger, “Induced transparency and absorption in coupled whispering-gallery microresonators,” Phys. Rev. A. 71, 043804(2005).
[Crossref]

Phys. Rev. Lett. (1)

Y.-C. Liu, Y.-F. Xiao, X.-S. Luan, and C.-W. Wong, “Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics,” Phys. Rev. Lett. 110(15), 153606 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

Y.-Z. Sun, S. I. Shopova, C.-S. Wu, S. Arnold, and X.-D. Fan, “Bioinspired optofluidic FRET lasers via DNA scaffolds,” Proc. Natl. Acad. Sci. USA 107(37), 16039–16042 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86(25), 1391–1452 (2014).
[Crossref]

Sci. China-Phy. Mech. Astron. (1)

Z.-H. Zhou, F.-J. Shu, Z. Shen, C.-H. Dong, and G.-C. Guo, “High-Q whispering gallery modes in a polymer microresonator with broad strain tuning,” Sci. China-Phy. Mech. Astron. 58(11), 114208 (2015).
[Crossref]

Sci. Rep. (2)

J.-M. Ward, Y. Yang, and Nic S. Chormaic, “Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications,” Sci. Rep. 6, 25152 (2016).
[Crossref] [PubMed]

M.-Y. Ye, M.-X. Shen, and X.-M. Lin, “Ringing phenomenon based whispering-gallery-mode sensing,” Sci. Rep. 6, 19597 (2016).
[Crossref] [PubMed]

Science (3)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: backaction at the mesoscale,” Science 321(5893), 1172–1176 (2008).
[Crossref] [PubMed]

C.-H. Dong, V. Fiore, M. C. Kuzyk, and H.-L. Wang, “Optomechanical dark mode,” Science 338(6114), 1609–1613 (2012).
[Crossref] [PubMed]

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330(6010), 1520–1523 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the strain tuning optomechanical modes experiment setup. FPC: fiber polarization controller. PD: photo detector. ESA: electronic spectrum analyzer. DSO: digital oscilloscope. PZT: the piezoelectric transducer. (b) A photograph of the BMLR sample with a diameter of 76 μm. (c) The typical calculated distribution of the optical modes at the cross-section of the BLMR. (d) The typical transmission spectral of the WGM with a linewidth of about 1.6 MHz. Solid red line represents the theoretical calculation with Q0 = 1.55 × 108 and Qex = 20 × 108.
Fig. 2
Fig. 2 Transmission spectra of the optical modes of the BLMR sample B for different voltage of the PZT. The transmission dips correspond to the WGM resonances. The measured free spectral range (FSR) describing the distance between two adjacent angular modes is about 7.3 nm.
Fig. 3
Fig. 3 (a) The WGM shift of BLMR with respect to the increasing the PZT position. The diameter of the resonators are 82μm, 76μm and 69μm with a thickness of 19.1μm, 18.7μm and 14.0μm, respectively. (b) The fine tuning of the WGM in a microresonator with diameter of 73μm with respect to the increasing and decreasing of the voltage of the PZT.
Fig. 4
Fig. 4 Displacement power spectrum of the mechanical modes obtained from sample B. The insets show the numerically simulated mechanical modes of the BLMR with corresponding frequencies. These fundamental mechanical modes can be excited in the microbottle resonator used in our experiments.
Fig. 5
Fig. 5 The mechanical power spectrum of the optomechanical mode versus different voltage of the PZT with a interval of 20μm.
Fig. 6
Fig. 6 (a) The frequency tuning of the mechanical modes in the BLMR sample A, B, C. (b) The linewidth of the mechanical modes during the tuning process.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d ν ν d a a + d n 0 n 0
d ν d F 0.2 ν E h a ,

Metrics