Abstract

An enhancement in the performance of a THz polariton laser based on an intracavity magnesium-doped lithium niobate crystal (Mg:LiNbO3) in surface-emitted (SE) configuration is demonstrated resulting from the deposition of a protective Teflon coating on the total internal reflection surface of the crystal. In this cavity geometry the resonating fields undergo total internal reflection (TIR) inside the lithium niobate, and laser damage to that surface can be a limiting factor in performance. The protective layer prevents laser damage to the crystal surface, enabling higher pump power, yielding higher THz output power and wider frequency tuning range. With the unprotected crystal, narrow-band THz output tunable from 1.50 to 2.81 THz was produced, with maximum average output power of 20.1 µW at 1.76 THz for 4 W diode pump power (limited by laser damage to the crystal). With the Teflon coating, no laser damage to the crystal was observed, and the system produced narrow-band THz output tunable from 1.46 to 3.84 THz, with maximum average output power of 56.8 µW at 1.76 THz for 6.5 W diode pump power. This is the highest average output power and the highest diode-to-terahertz conversion efficiency ever reported for an intracavity terahertz polariton laser.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output

Tiago A. Ortega, Helen M. Pask, David J. Spence, and Andrew J. Lee
Opt. Express 24(10) 10254-10264 (2016)

Cascaded stimulated polariton scattering in a Mg:LiNbO3 terahertz laser

Andrew J. Lee and Helen M. Pask
Opt. Express 23(7) 8687-8698 (2015)

Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate

Ming-Hsiung Wu, Yu-Chung Chiu, Tsong-Dong Wang, Gang Zhao, Andrius Zukauskas, Fredrik Laurell, and Yen-Chieh Huang
Opt. Express 24(23) 25964-25973 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
    [Crossref]
  2. S. J. Oh, J. Choi, I. Maeng, J. Y. Park, K. Lee, Y.-M. Huh, J.-S. Suh, S. Haam, and J.-H. H. Son, “Molecular imaging with terahertz waves,” Opt. Express 19(5), 4009–4016 (2011).
    [Crossref] [PubMed]
  3. J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
    [Crossref]
  4. K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
    [Crossref]
  5. Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).
  6. Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
    [Crossref]
  7. A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
    [Crossref]
  8. A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
    [Crossref] [PubMed]
  9. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]
  10. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
    [Crossref] [PubMed]
  11. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [Crossref] [PubMed]
  12. W. Wang, X. Zhang, Q. Wang, Z. Cong, X. Chen, Z. Liu, Z. Qin, P. Li, G. Tang, N. Li, C. Wang, Y. Li, and W. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal,” Opt. Lett. 39(4), 754–757 (2014).
    [Crossref] [PubMed]
  13. Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
    [Crossref]
  14. Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
    [Crossref]
  15. M.-H. Wu, Y.-C. Chiu, T.-D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y.-C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24(23), 25964–25973 (2016).
    [Crossref] [PubMed]
  16. R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
    [Crossref]
  17. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [Crossref]
  18. R. J. Shine, A. J. Alfrey, and R. L. Byer, “40-W cw, TEM(00)-mode, diode-laser-pumped, Nd:YAG miniature-slab laser,” Opt. Lett. 20(5), 459–461 (1995).
    [Crossref] [PubMed]
  19. Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
    [Crossref]
  20. Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
    [Crossref]
  21. “Lascad-Software for Laser Cavity Analysis and Design,” https://www.las-cad.com/ .
  22. T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).
  23. F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).
  24. N. J. Bazin, J. E. Andrew, and H. A. McInnes, “Formation of Teflon AF Polymer Thin Films as Optical Coatings in the High Peak Power Laser Field.,” Proc. SPIE 3492, Third Int. Conf. Solid State Lasers Appl. to Inert. Confin. Fusion 3492, 964–969 (1999).
    [Crossref]
  25. E. Bründermann, H. W. Hübers, and M. F. G. Kimmitt, Terahertz Techniques (2012), Vol. 151.
  26. D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
    [Crossref]
  27. Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
    [Crossref]

2016 (2)

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

M.-H. Wu, Y.-C. Chiu, T.-D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y.-C. Huang, “Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate,” Opt. Express 24(23), 25964–25973 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

A. J. Lee and H. M. Pask, “Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering,” Opt. Lett. 39(3), 442–445 (2014).
[Crossref] [PubMed]

W. Wang, X. Zhang, Q. Wang, Z. Cong, X. Chen, Z. Liu, Z. Qin, P. Li, G. Tang, N. Li, C. Wang, Y. Li, and W. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO3 crystal,” Opt. Lett. 39(4), 754–757 (2014).
[Crossref] [PubMed]

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

2013 (3)

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

2011 (1)

2010 (1)

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

2008 (1)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

2007 (1)

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

2006 (2)

F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

2002 (1)

K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

2001 (1)

2000 (1)

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

1998 (1)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

1995 (1)

1993 (1)

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

1991 (1)

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

1977 (1)

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
[Crossref]

Ahr, F.

Albiol, F.

F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).

Alfrey, A. J.

Andres, M. V.

F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).

Baron, P.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Bettis, J.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
[Crossref]

Browne, P. G.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Byer, R. L.

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Chen, T. N.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Chen, X.

Cheng, W.

Chiu, Y.-C.

Choi, J.

Cong, Z.

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Dunn, M. H.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Edwards, T. J.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Feng, H.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Fukunaga, K.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Furukawa, Y.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Gan, F.

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

Guenther, A.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
[Crossref]

Guo, R.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

Haam, S.

He, Y.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Hiromasa, I.

K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Hosako, I.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

House, R.

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
[Crossref]

Huang, W. R.

Huang, Y.-C.

Huh, Y.-M.

Ikari, T.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

Imai, K.

Ito, H.

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Jiang, H.

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Karino, K. I.

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Kärtner, F. X.

Kasai, Y.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Kawase, K.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Kumagai, H.

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

Laurell, F.

Lee, A.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Lee, A. J.

Lee, K.

Li, C. F.

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

Li, J. Q.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Li, N.

Li, P.

Li, Y.

Li, Z. X.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Li, Z. Y.

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

Liu, Z.

Maeng, I.

Mendrok, J.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Meng, Q.

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

Minamide, H.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

Murate, K.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

Nashima, S.

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

Navas, S.

F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).

Nawata, K.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

Nichols, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Nitanda, F.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Ochiai, S.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Oh, S. J.

Ohira, T.

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

Park, J. Y.

Pask, H.

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

Pask, H. M.

Patrashin, M.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Qin, Z.

Rae, C. F.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Raether, R. G.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Saito, S.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Sasaki, T.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Sato, M.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Sekine, N.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Seta, T.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Shi, W.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Shikata, J.

Shikata, J. I.

K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Shine, R. J.

Son, J.-H. H.

Stothard, D. J. M.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Suh, J.-S.

Sun, Y.

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

Tadokoro, Y.

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

Taira, Y.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

Takida, Y.

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

Tang, G.

Taniuchi, T.

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Thomas, I. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Thomson, C. L.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Tripathi, S. R.

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

Walsh, D.

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Wang, C.

Wang, Q.

Wang, T.-D.

Wang, W.

Wang, Y. Y.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Wu, M.-H.

Wu, X.

Xu, D. G.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Yan, C.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Yao, J. Q.

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Yasuda, H.

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Yokotani, A.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Yoshida, H.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Yoshida, K.

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

Zhang, B.

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

Zhang, X.

Zhao, G.

Zhong, K.

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Zhong, S.

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

Zhou, C.

Zhu, L.

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

Zukauskas, A.

Am. J. Phys. (1)

F. Albiol, S. Navas, and M. V. Andres, “Microwave experiments on electromagnetic evanescent waves and tunneling effect,” Am. J. Phys. 165, 165–169 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. J. M. Stothard, T. J. Edwards, D. Walsh, C. L. Thomson, C. F. Rae, M. H. Dunn, and P. G. Browne, “Line-narrowed, compact, and coherent source of widely tunable terahertz radiation,” Appl. Phys. Lett. 92(14), 141105 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Q. Meng, B. Zhang, S. Zhong, and L. Zhu, “Damage threshold of lithium niobate crystal under single and multiple femtosecond laser pulses: theoretical and experimental study,” Appl. Phys., A Mater. Sci. Process. 122(6), 582 (2016).
[Crossref]

IEEE J. Quantum Electron. (2)

R. House, J. Bettis, and A. Guenther, “Surface roughness and laser damage threshold,” IEEE J. Quantum Electron. 13(5), 361–363 (1977).
[Crossref]

A. Lee, Y. He, and H. Pask, “Frequency-tunable THz source based on stimulated polariton scattering in Mg:LiNbO3,” IEEE J. Quantum Electron. 49(3), 357–364 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Takida, T. Ohira, Y. Tadokoro, H. Kumagai, and S. Nashima, “Tunable picosecond terahertz-wave parametric oscillators based on noncollinear pump-enhanced signal-resonant cavity,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8500307 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

IEEE Trans. THz. Sci. Technol. (1)

Y. Taira, S. R. Tripathi, K. Murate, K. Nawata, H. Minamide, and K. Kawase, “A Terahertz Wave Parametric Amplifier With a Gain of 55 dB,” IEEE Trans. THz. Sci. Technol. 4, 753–755 (2014).

J. Appl. Phys. (1)

Y. Furukawa, A. Yokotani, T. Sasaki, H. Yoshida, K. Yoshida, F. Nitanda, and M. Sato, “Investigation of bulk laser damage threshold of lithium niobate single crystals by Q-switched pulse laser,” J. Appl. Phys. 69(5), 3372–3374 (1991).
[Crossref]

J. Eur. Opt. Soc. (1)

T. Ikari, R. Guo, H. Minamide, and H. Ito, “Energy scalable terahertz-wave parametric oscillator using surface-emitted configuration,” J. Eur. Opt. Soc. 5, 1–4 (2010).

J. Phys. D Appl. Phys. (1)

K. Kawase, J. I. Shikata, and I. Hiromasa, “Terahertz wave parametric sources,” J. Phys. D Appl. Phys. 35(3), R1–R14 (2002).
[Crossref]

Laser Phys. (2)

Y. Y. Wang, Z. X. Li, J. Q. Li, C. Yan, T. N. Chen, D. G. Xu, W. Shi, H. Feng, and J. Q. Yao, “Energy scaling of a tunable terahertz parametric oscillator with a surface emitted configuration,” Laser Phys. 24(12), 125402 (2014).
[Crossref]

Y. Y. Wang, D. G. Xu, H. Jiang, K. Zhong, and J. Q. Yao, “A high-energy, low-threshold tunable intracavity terahertz-wave parametric oscillator with surface-emitted configuration,” Laser Phys. 23(5), 055406 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. IEEE (1)

I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95(8), 1611–1623 (2007).
[Crossref]

Proc. SPIE (2)

Y. Sun, C. F. Li, Z. Y. Li, and F. Gan, “Investigation of nonlinear absorption and laser damage on lithium niobate single crystals,” Proc. SPIE 1848, 594–598 (1993).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Other (3)

N. J. Bazin, J. E. Andrew, and H. A. McInnes, “Formation of Teflon AF Polymer Thin Films as Optical Coatings in the High Peak Power Laser Field.,” Proc. SPIE 3492, Third Int. Conf. Solid State Lasers Appl. to Inert. Confin. Fusion 3492, 964–969 (1999).
[Crossref]

E. Bründermann, H. W. Hübers, and M. F. G. Kimmitt, Terahertz Techniques (2012), Vol. 151.

“Lascad-Software for Laser Cavity Analysis and Design,” https://www.las-cad.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intracavity surface-emitted resonator layout.

Fig. 2
Fig. 2

Power scaling for the fundamental (1064 nm), Stokes (1071 nm, magnified 10 times) and THz (1.76 THz) fields without Teflon coating on Mg:LiNbO3 crystal. The laser was operated at 50% duty-cycle.

Fig. 3
Fig. 3

Teflon-coated Mg:LiNbO3 crystal: Power scaling for the fundamental (1064 nm), Stokes (1071 nm, magnified 10 times) and THz (1.76 THz) fields after the Teflon deposition on the crystal. The laser was operated at 50% duty-cycle.

Fig. 4
Fig. 4

Comparative plot of terahertz frequency-coverage of the system before and after the protective Teflon layer deposition on the lithium niobate total internal reflection surface. In each case, the diode pump power was adjusted to maximize the average THz output power.

Metrics