Abstract

We developed a new numerical simulation method to calculate the amplification of arbitrary laser pulses in double-pass amplifiers in which two polarization-orthogonal pulses inside the gain medium overlap. The proposed method agrees very well with the experimental results given in this work for the pulse energy and temporal shape.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compensation of pulse-distortion in saturated laser amplifiers

Damian N. Schimpf, Clemens Ruchert, Dirk Nodop, Jens Limpert, Andreas Tünnermann, and Francois Salin
Opt. Express 16(22) 17637-17646 (2008)

Double-pass amplification of picosecond pulses with a tapered semiconductor amplifier

Adam F. Forrest, Michel Krakowski, Paolo Bardella, and Maria Ana Cataluna
Opt. Express 27(21) 30752-30762 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express 19, 8486–8497 (2011).
    [Crossref] [PubMed]
  2. O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
    [Crossref] [PubMed]
  3. H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
    [Crossref]
  4. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
    [Crossref] [PubMed]
  5. C. Liu, J. Zhang, S. Chen, G. Golovin, S. Banerjee, B. Zhao, N. Powers, I. Ghebregziabher, and D. Umstadter, “Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses,” Opt. Lett. 39(1), 80–83 (2014).
    [Crossref]
  6. M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B. 12(7), 1343–1362 (1995).
    [Crossref]
  7. L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.
  8. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
    [Crossref]
  9. J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
    [Crossref]
  10. S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
    [Crossref]
  11. Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
    [Crossref]
  12. M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
    [Crossref]
  13. W. Koechner, Solid-state Laser Engineering, 6th ed. (Springer, 2006).
  14. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
    [Crossref] [PubMed]
  15. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
    [Crossref] [PubMed]
  16. J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
    [Crossref]

2017 (1)

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

2016 (1)

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

2014 (2)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

C. Liu, J. Zhang, S. Chen, G. Golovin, S. Banerjee, B. Zhao, N. Powers, I. Ghebregziabher, and D. Umstadter, “Adaptive-feedback spectral-phase control for interactions with transform-limited ultrashort high-power laser pulses,” Opt. Lett. 39(1), 80–83 (2014).
[Crossref]

2013 (1)

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

2012 (1)

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2005 (1)

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
[Crossref]

2000 (1)

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

1999 (1)

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

1995 (1)

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B. 12(7), 1343–1362 (1995).
[Crossref]

1989 (1)

J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
[Crossref]

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Albert, O.

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Banerjee, S.

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

BerzakHopkins, L. F.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Buffechoux, S.

Callahan, D. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Canova, L.

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

Casey, D. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Celliers, P. M.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Cerjan, C.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Chen, S.

Cho, S.

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Clark, D.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Cui, X. D.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Dewald, E. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Dittrich, T. R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Döppner, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Dyer, P. E.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
[Crossref]

Edwards, M. J.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Eggleston, J. M.

J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
[Crossref]

Fourmaux, S.

Frantz, L. M.

J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
[Crossref]

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Ghebregziabher, I.

Giacomini, P.

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

Golovin, G.

Haan, S. W.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Hinkel, D. E.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Hirano, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

Hurricane, O. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Injeyan, H.

J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
[Crossref]

Ireland, C. L. M.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
[Crossref]

Jeong, J.

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

Jeong, T. M.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

Jiang, X. Y.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Kieffer, J.

Kim, T.

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

Kline, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Koechner, W.

W. Koechner, Solid-state Laser Engineering, 6th ed. (Springer, 2006).

Koyata, Y.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

LaFortune, K. N.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Landen, O. L.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Lassonde, P.

Le Pape, S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Lee, J.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

Lee, S. K.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

LePape, S.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Li, M.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Lindl, J. D.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Liu, C.

Lopez-Martens, R.

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

Ma, T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

MacGowan, B. J.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

MacPhee, A. G.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Martin, F.

Milovich, J. L.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Moody, J. D.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B. 12(7), 1343–1362 (1995).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

Pak, A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Park, H.-S.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Patel, P. K.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Paul, P.

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

Pavel, N.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

Payeur, S.

Pearce, S.

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
[Crossref]

Powers, N.

Ralph, J.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Remington, B. A.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Robey, H. F.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Ross, J. S.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Salmonson, J. D.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Spears, B. K.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Springer, P. T.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

St-Pierre, C.

Sung, J. H.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

Tajime, T.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

Tommasini, R.

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

Umstadter, D.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Wang, W.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Wang, Z. G.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B. 12(7), 1343–1362 (1995).
[Crossref]

Widmayer, C.

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Yamamoto, S.

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

Yan, X. W.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Yoon, J. W.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

Yu, T. J.

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, “0.1 Hz 1.0 PW Ti:sapphire laser,” Opt. Lett. 35(18), 3021–3023 (2010).
[Crossref] [PubMed]

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Zhang, J.

Zhang, X. M.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Zhao, B.

Zheng, J. G.

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

J. M. Eggleston, L. M. Frantz, and H. Injeyan, “Deviation of the Frantz-Nodvik equation for zig-zag optical path, slab geometry laser amplifiers,” IEEE J. Quantum Electron. 25(8), 1855–1862 (1989).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34, 2346–2349 (1963).
[Crossref]

J. Korean Phys. Soc. (1)

J. Jeong, S. Cho, T. Kim, and T. J. Yu, “Numerical study of a thermally-compensated high-energy double-pass Nd:YAG amplifier design,” J. Korean Phys. Soc. 68, 653–657 (2016).
[Crossref]

J. Opt. Soc. Am. B. (1)

M. M. Wefers and K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B. 12(7), 1343–1362 (1995).
[Crossref]

Nature (2)

O. A. Hurricane, D. A. Callahan, D. T. Casey, P. M. Celliers, C. Cerjan, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. BerzakHopkins, J. L. Kline, S. Le Pape, T. Ma, A. G. MacPhee, J. L. Milovich, A. Pak, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson, P. T. Springer, and R. Tommasini, “Fuel gain exceeding unity in an inertially confined fusion implosion,” Nature 506, 343–348 (2014).
[Crossref] [PubMed]

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays,” Nature 406, 164–166 (2000).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Pearce, C. L. M. Ireland, and P. E. Dyer, “Simplified analysis of double pass amplification with pulse overlap and application to Nd:YVO4 laser,” Opt. Commun. 255(4–6), 297–303 (2005).
[Crossref]

Y. Hirano, N. Pavel, S. Yamamoto, Y. Koyata, and T. Tajime, “100-W class diode-pumped Nd:YAG MOPA system with a double-stage relay-optics scheme,” Opt. Commun. 170(4), 275–280 (1999).
[Crossref]

M. Li, X. M. Zhang, Z. G. Wang, X. D. Cui, X. W. Yan, X. Y. Jiang, J. G. Zheng, W. Wang, and M. Li, “Analytical and numerical solutions to the amplifier with incoherent pulse temporal overlap,” Opt. Commun. 382, 49–57 (2017).
[Crossref]

Opt. Express (1)

Opt. Express. (1)

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express. 20(10), 10807–10815 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Plasmas (1)

H. F. Robey, B. J. MacGowan, O. L. Landen, K. N. LaFortune, C. Widmayer, P. M. Celliers, J. D. Moody, J. S. Ross, J. Ralph, S. LePape, L. F. BerzakHopkins, B. K. Spears, S. W. Haan, D. Clark, J. D. Lindl, and M. J. Edwards, “The effect of laser pulse shape variations on the adiabat of NIF capsule implosions,” Phys. Plasmas 20, 52707 (2013).
[Crossref]

Other (2)

L. Canova, O. Albert, R. Lopez-Martens, P. Giacomini, and P. Paul, “Ultrashort pulses generation with the Mazzler active spectral broadening and the XPW pulse shortening technique,” in Quantum Electron. Laser Sci. Conf. Photon App. Sys. Tech. OSA Technical Digest (CD) (Optical Society of America, 2008), paper JTuA39.

W. Koechner, Solid-state Laser Engineering, 6th ed. (Springer, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Examples of a segmented (a) input and (b) output pulses of an amplifier. The outputs are calculated using (red bar) Eqs. (2) and (3) and (blue line) the general photon density equation n(x, t). (Example condition: Φ1.22 cm × L8.5 cm Nd:YAG single-pass amplifier, stored energy of 2 J, input pulse energy of 0.5 J×, super-Gaussian pulse shape, and pulse length of 5.5 ns)
Fig. 2
Fig. 2 A schematic of the double-pass amplifier
Fig. 3
Fig. 3 (a) Schematic of dual-rod double-pass Nd:YAG laser amplifier (QR: quartz rotator, λ/4: quarter-wave-plate). (b) and (c) show the input pulses and change in stored energy of each medium. (d) and (e) show the final outputs of the amplifier that are calculated with different calculation schemes. (“Eq. (2)” is the calculation that do not include the pulse overlapping effect, “Eq. (4)” is the calculation that use the thin medium model, and “Eq. (4) w/EOPL” is the calculation that segments both the laser pulse and gain media.
Fig. 4
Fig. 4 (a) Pulse energy errors and (b) RMS pulse shape errors of three different calculation schemes as a function of segment size. The inset of (a) shows the magnified view. The upper x-axes of the graphs show the corresponding segment number of the input pulse.
Fig. 5
Fig. 5 (a) The output energy of the single- and double-pass amplifier as a function of input pulse energy. The point graphs show the measurement data, and the line graphs are the calculated results. “Eq. (4)” and “Eq. (2)” represent the calculations that do and do not consider the pulse overlapping, respectively. (b) The total extracted energy from the gain media as a function of input energy. The x-axis uses a log scale. (c) The calculated output pulse shapes when the amplifier is fully saturated with 1 J of input pulse energy. (d)–(f) The measured input and output, and calculated outputs when the input energy is 10.9 mJ. The measured output corresponds to the empty circle point of graph (a).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

J o u t = J i n G E = J s a t ln { 1 + [ exp ( J i n J s a t ) 1 ] exp ( g 0 L ) } ,
J o u t ( n ) = J s a t ln { 1 + [ exp ( J i n ( n ) J s a t ) 1 ] exp ( J s t o ( n ) γ J s a t ) } ,
J s t o ( n + 1 ) = J s t o ( n ) ( J o u t ( n ) J i n ( n ) ) J A S E ( n ) + J p u m p ( n ) ,
G E ( n ) = J s a t J i n 1 ( n ) + J i n 2 ( n ) ln { 1 + [ exp ( J i n 1 ( n ) + J i n 2 ( n ) J s a t ) 1 ] exp ( J s t o ( n ) γ J s a t ) } ,
J o u t 1 ( n ) = G E ( n ) J i n 1 ( n ) ,
J o u t 2 ( n ) = G E ( n ) J i n 2 ( n ) ,
J s t o ( n + 1 ) = J s t o ( n ) ( G E ( n ) 1 ) ( J i n 1 ( n ) + J i n 2 ( n ) ) J A S E ( n ) + J p u m p ( n ) .
N 2 t = B 21 ϱ ( v 21 ) N 2 ,

Metrics