Abstract

Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states’ lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Chiroptical activity in colloidal quantum dots coated with achiral ligands

Dzmitry Melnikau, Diana Savateeva, Nikolai Gaponik, Alexander O. Govorov, and Yury P. Rakovich
Opt. Express 24(2) A65-A73 (2016)

Shape-induced optical activity of chiral nanocrystals

Ivan D. Rukhlenko, Anvar S. Baimuratov, Nikita V. Tepliakov, Alexander V. Baranov, and Anatoly V. Fedorov
Opt. Lett. 41(11) 2438-2441 (2016)

Multimodal optical studies of single and clustered colloidal quantum dots for the long-term optical property evaluation of quantum dot-based molecular imaging phantoms

HyeongGon Kang, Matthew L. Clarke, Silvia H. De Paoli Lacerda, Alamgir Karim, Leonard F. Pease, and Jeeseong Hwang
Biomed. Opt. Express 3(6) 1312-1325 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Wu and Z. M. Wang, Quantum Dot Molecules (Springer, 2014).
    [Crossref]
  2. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
    [Crossref]
  3. K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
    [Crossref]
  4. S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
    [Crossref]
  5. K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
    [Crossref] [PubMed]
  6. E. Rahimi and S. M. Nejad, “Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates,” Nanoscale Res. Lett. 7, 274 (2012).
    [Crossref] [PubMed]
  7. D. De, K. P. Ghatak, and S. Bhattacharaya, Quantum Dots and Quantum Cellular Automata (Nova Science Publishers, Inc, 2013).
  8. Y. He, W. Bo, R. K. Dukor, and L. A. Nafie, “Determination of absolute configuration of chiral molecules using vibrational optical activity: A review,” Appl. Spectrosc. 65, 699–723 (2011).
    [Crossref] [PubMed]
  9. M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
    [Crossref] [PubMed]
  10. N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
    [Crossref]
  11. A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
    [Crossref] [PubMed]
  12. M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
    [Crossref]
  13. J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
    [Crossref] [PubMed]
  14. A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
    [Crossref]
  15. S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
    [Crossref]
  16. M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
    [Crossref] [PubMed]
  17. A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
    [Crossref] [PubMed]
  18. A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
    [Crossref] [PubMed]
  19. N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
    [Crossref]
  20. I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
    [Crossref] [PubMed]
  21. X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
    [Crossref] [PubMed]
  22. G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
    [Crossref] [PubMed]
  23. N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
    [Crossref] [PubMed]
  24. A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
    [Crossref] [PubMed]
  25. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
    [Crossref] [PubMed]
  26. B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
    [Crossref] [PubMed]
  27. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
    [Crossref] [PubMed]
  28. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
    [Crossref] [PubMed]
  29. A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
    [Crossref]
  30. A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
    [Crossref] [PubMed]
  31. N. Berova, Comprehensive Chiroptical Spectroscopy, vol. 1 (John Wiley & Sons, 2012).
    [Crossref]
  32. L. Rosenfeld, “Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen,” Z. Phys. 52, 161–174 (1929).
    [Crossref]
  33. M. Nieto-Vesperinas, “Resonant chirality in light scattered from magnetodielectric particles,” arXiv preprint arXiv:1611.02613 (2016).
  34. M. Nieto-Vesperinas, “Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy transfer and enantiomeric discrimination by circular dichroism,” Phys. Rev. A 92, 023813 (2015).
    [Crossref]
  35. X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
    [Crossref] [PubMed]
  36. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref] [PubMed]
  37. Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
    [Crossref] [PubMed]
  38. R. R. Judkins and D. J. Royer, “Optical rotatory strength of tris-bidentate cobalt(III) complexes,” Inorg. Chem. 13, 945–950 (1974).
    [Crossref]
  39. T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
    [Crossref] [PubMed]
  40. P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
    [Crossref] [PubMed]
  41. I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
    [Crossref] [PubMed]
  42. M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
    [Crossref] [PubMed]

2016 (6)

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref] [PubMed]

2015 (6)

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

M. Nieto-Vesperinas, “Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy transfer and enantiomeric discrimination by circular dichroism,” Phys. Rev. A 92, 023813 (2015).
[Crossref]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

2014 (2)

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

2013 (3)

2012 (7)

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

E. Rahimi and S. M. Nejad, “Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates,” Nanoscale Res. Lett. 7, 274 (2012).
[Crossref] [PubMed]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
[Crossref] [PubMed]

2008 (1)

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

2006 (1)

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[Crossref] [PubMed]

2005 (1)

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

1974 (1)

R. R. Judkins and D. J. Royer, “Optical rotatory strength of tris-bidentate cobalt(III) complexes,” Inorg. Chem. 13, 945–950 (1974).
[Crossref]

1971 (1)

T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
[Crossref] [PubMed]

1969 (1)

P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
[Crossref] [PubMed]

1929 (1)

L. Rosenfeld, “Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen,” Z. Phys. 52, 161–174 (1929).
[Crossref]

Abdulrahman, N. A.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Albelda, M. T.

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

Alonso-Gomez, J. L.

B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
[Crossref] [PubMed]

Arakawa, Y.

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

Artemyev, M. V.

Auguie, B.

B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
[Crossref] [PubMed]

Badolato, A.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Baimuratov, A. S.

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

Baranov, A. V.

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
[Crossref] [PubMed]

Baskin, A.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Bayley, P. M.

T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
[Crossref] [PubMed]

P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
[Crossref] [PubMed]

Baymuratov, A. S.

Berova, N.

N. Berova, Comprehensive Chiroptical Spectroscopy, vol. 1 (John Wiley & Sons, 2012).
[Crossref]

Berwick, K.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

Bhattacharaya, S.

D. De, K. P. Ghatak, and S. Bhattacharaya, Quantum Dots and Quantum Cellular Automata (Nova Science Publishers, Inc, 2013).

Bo, W.

Bonod, N.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref] [PubMed]

Bordel, D.

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

Bracker, A. S.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Canary, J. W.

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

Chan, H.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Climente, J. I.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
[Crossref] [PubMed]

Cook, T. A.

Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
[Crossref] [PubMed]

De, D.

D. De, K. P. Ghatak, and S. Bhattacharaya, Quantum Dots and Quantum Cellular Automata (Nova Science Publishers, Inc, 2013).

Delley, Y. L.

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Doty, M. F.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Dukor, R. K.

Economou, S. E.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Elzerman, J. M.

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Fan, Z.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref] [PubMed]

Fang, Y.

X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
[Crossref] [PubMed]

Fedorov, A. V.

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

M. V. Mukhina, V. G. Maslov, A. V. Baranov, M. V. Artemyev, A. O. Orlova, and A. V. Fedorov, “Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods,” Opt. Lett. 38, 3426–3428 (2013).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
[Crossref] [PubMed]

Gadegaard, N.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Gammon, D.

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Gelman, E.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Ghatak, K. P.

D. De, K. P. Ghatak, and S. Bhattacharaya, Quantum Dots and Quantum Cellular Automata (Nova Science Publishers, Inc, 2013).

Ginzburg, P.

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

Govan, J.

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

Govorov, A. O.

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Graham, M. W.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[Crossref] [PubMed]

Guerrero-Martinez, A.

B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
[Crossref] [PubMed]

Guimard, D.

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

Gun’ko, Y. K.

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

He, Y.

Hendry, E.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Imamoglu, A.

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Judkins, R. R.

R. R. Judkins and D. J. Royer, “Optical rotatory strength of tris-bidentate cobalt(III) complexes,” Inorg. Chem. 13, 945–950 (1974).
[Crossref]

Kadodwala, M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Kelly, S. M.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

King, T. S.

T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
[Crossref] [PubMed]

Klajn, R.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Kral, P.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Kruchinin, S. Y.

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Leonov, M. Y.

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Liu, Y.

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

Liz-Marzan, L. M.

B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
[Crossref] [PubMed]

Loudon, A.

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

Maslov, V. G.

Miguel-Sanchez, J.

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Moloney, M. P.

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

Mukhina, M.

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

Mukhina, M. V.

Nafie, L. A.

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Nejad, S. M.

E. Rahimi and S. M. Nejad, “Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates,” Nanoscale Res. Lett. 7, 274 (2012).
[Crossref] [PubMed]

Nielsen, E. B.

P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

M. Nieto-Vesperinas, “Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy transfer and enantiomeric discrimination by circular dichroism,” Phys. Rev. A 92, 023813 (2015).
[Crossref]

M. Nieto-Vesperinas, “Resonant chirality in light scattered from magnetodielectric particles,” arXiv preprint arXiv:1611.02613 (2016).

Noskov, R. E.

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

Orlova, A. O.

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Perova, T. S.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

Ponomareva, I. O.

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

Premaratne, M.

Quack, M.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Rahimi, E.

E. Rahimi and S. M. Nejad, “Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates,” Nanoscale Res. Lett. 7, 274 (2012).
[Crossref] [PubMed]

Repnin, N.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Rosenfeld, L.

L. Rosenfeld, “Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen,” Z. Phys. 52, 161–174 (1929).
[Crossref]

Royer, D. J.

R. R. Judkins and D. J. Royer, “Optical rotatory strength of tris-bidentate cobalt(III) complexes,” Inorg. Chem. 13, 945–950 (1974).
[Crossref]

Rukhlenko, I. D.

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, and A. V. Fedorov, “Engineering band structure in nanoscale quantum-dot supercrystals,” Opt. Lett. 38, 2259–2261 (2013).
[Crossref] [PubMed]

I. D. Rukhlenko, A. V. Fedorov, A. S. Baymuratov, and M. Premaratne, “Theory of quasi-elastic secondary emission from a quantum dot in the regime of vibrational resonance,” Opt. Express 19, 15459–15482 (2011).
[Crossref] [PubMed]

Salvador, M. R.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[Crossref] [PubMed]

Scholes, G. D.

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Shellman, J. A.

P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Singh, G.

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Stohner, J.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Sun, M.

X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
[Crossref] [PubMed]

Tanabe, K.

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
[Crossref] [PubMed]

Tepliakov, N. V.

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

I. D. Rukhlenko, A. S. Baimuratov, N. V. Tepliakov, A. V. Baranov, and A. V. Fedorov, “Shape-induced optical activity of chiral nanocrystals,” Opt. Lett. 41, 2438–2441 (2016).
[Crossref] [PubMed]

Tian, X.

X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
[Crossref] [PubMed]

Tonooka, T.

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

Turkov, V. K.

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

Wang, Z. M.

J. Wu and Z. M. Wang, Quantum Dot Molecules (Springer, 2014).
[Crossref]

Weiss, K. M.

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Willeke, M.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Wu, J.

J. Wu and Z. M. Wang, Quantum Dot Molecules (Springer, 2014).
[Crossref]

Yong, F. C.

T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
[Crossref] [PubMed]

Zambrana-Puyalto, X.

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref] [PubMed]

Zhang, J.

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 100, 193905 (2012).
[Crossref]

Appl. Spectrosc. (1)

ChemPhysChem (1)

A. O. Govorov and Z. Fan, “Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media,” ChemPhysChem 13, 2551–2560 (2012).
[Crossref] [PubMed]

Chirality (1)

J. Zhang, M. T. Albelda, Y. Liu, and J. W. Canary, “Chiral nanotechnology,” Chirality 17, 404–420 (2005).
[Crossref] [PubMed]

Eur. J. Biochem. (1)

T. S. King, P. M. Bayley, and F. C. Yong, “Optical rotatory dispersion and circular dichroism of cytochrome oxidase,” Eur. J. Biochem. 20, 103–110 (1971).
[Crossref] [PubMed]

Inorg. Chem. (1)

R. R. Judkins and D. J. Royer, “Optical rotatory strength of tris-bidentate cobalt(III) complexes,” Inorg. Chem. 13, 945–950 (1974).
[Crossref]

J. Appl. Phys. (2)

S. Y. Kruchinin, I. D. Rukhlenko, A. S. Baimuratov, M. Y. Leonov, V. K. Turkov, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Photoluminescence of a quantum-dot molecule,” J. Appl. Phys. 117, 014306 (2015).
[Crossref]

N. V. Tepliakov, A. S. Baimuratov, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Optical activity of chirally distorted nanocrystals,” J. Appl. Phys. 119, 194302 (2016).
[Crossref]

J. Chem. Phys. (1)

M. R. Salvador, M. W. Graham, and G. D. Scholes, “Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots,” J. Chem. Phys. 125, 184709 (2006).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. M. Bayley, E. B. Nielsen, and J. A. Shellman, “The rotatory properties of molecules containing two peptide groups: Theory,” J. Phys. Chem. 73, 228–243 (1969).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

Y. Tang, T. A. Cook, and A. E. Cohen, “Limits on fluorescence detected circular dichroism of single helicene molecules,” J. Phys. Chem. A 113, 6213–6216 (2009).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

B. Auguie, J. L. Alonso-Gomez, A. Guerrero-Martinez, and L. M. Liz-Marzan, “Fingers crossed: Optical activity of a chiral dimer of plasmonic nanorods,” J. Phys. Chem. Lett. 2, 846–851 (2011).
[Crossref] [PubMed]

Nano Lett. (4)

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10, 2580–2587 (2010).
[Crossref] [PubMed]

N. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, and M. Kadodwala, “Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures,” Nano Lett. 12, 977–983 (2012).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Dislocation-induced chirality of semiconductor nanocrystals,” Nano Lett. 15, 1710–1715 (2015).
[Crossref] [PubMed]

Nanophotonics (1)

N. V. Tepliakov, A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Engineering optical activity of semiconductor nanocrystals via ion doping,” Nanophotonics 5, 517–522 (2016).
[Crossref]

Nanoscale (1)

X. Zambrana-Puyalto and N. Bonod, “Tailoring the chirality of light emission with spherical Si-based antennas,” Nanoscale 8, 10441–10452 (2016).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

E. Rahimi and S. M. Nejad, “Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates,” Nanoscale Res. Lett. 7, 274 (2012).
[Crossref] [PubMed]

Nature (1)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012).
[Crossref] [PubMed]

Nature Protoc. (1)

M. P. Moloney, J. Govan, A. Loudon, M. Mukhina, and Y. K. Gun’ko, “Preparation of chiral quantum dots,” Nature Protoc. 10, 558–573 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. A (1)

M. Nieto-Vesperinas, “Optical theorem for the conservation of electromagnetic helicity: Significance for molecular energy transfer and enantiomeric discrimination by circular dichroism,” Phys. Rev. A 92, 023813 (2015).
[Crossref]

Phys. Rev. B (1)

S. E. Economou, J. I. Climente, A. Badolato, A. S. Bracker, D. Gammon, and M. F. Doty, “Scalable qubit architecture based on holes in quantum dot molecules,” Phys. Rev. B 86, 085319 (2012).
[Crossref]

Phys. Rev. Lett. (2)

K. M. Weiss, J. M. Elzerman, Y. L. Delley, J. Miguel-Sanchez, and A. Imamoğlu, “Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots,” Phys. Rev. Lett. 109, 107401 (2012).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

Sci. Rep. (6)

A. S. Baimuratov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Chiral quantum supercrystals with total dissymetry of optical response,” Sci. Rep. 6, 23321 (2016).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, I. O. Ponomareva, M. Y. Leonov, T. S. Perova, K. Berwick, A. V. Baranov, and A. V. Fedorov, “Level anticrossing of impurity states in semiconductor nanocrystals,” Sci. Rep. 4, 6917 (2014).
[Crossref] [PubMed]

A. S. Baimuratov, I. D. Rukhlenko, V. K. Turkov, A. V. Baranov, and A. V. Fedorov, “Quantum-dot supercrystals for future nanophotonics,” Sci. Rep. 3, 1727 (2013).
[Crossref]

A. S. Baimuratov, I. D. Rukhlenko, R. E. Noskov, P. Ginzburg, Y. K. Gun’ko, A. V. Baranov, and A. V. Fedorov, “Giant optical activity of quantum dots, rods, and disks with screw dislocations,” Sci. Rep. 5, 14712 (2015).
[Crossref] [PubMed]

X. Tian, Y. Fang, and M. Sun, “Formation of enhanced uniform chiral fields in symmetric dimer nanostructures,” Sci. Rep. 5, 17534 (2015).
[Crossref] [PubMed]

A. S. Baimuratov, N. V. Tepliakov, Y. K. Gun’ko, A. V. Baranov, A. V. Fedorov, and I. D. Rukhlenko, “Mixing of quantum states: A new route to creating optical activity,” Sci. Rep. 6, 17 (2016).
[Crossref]

Science (1)

G. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Kral, and R. Klajn, “Self-assembly of magnetite nanocubes into helical superstructures,” Science 345, 1149–1153 (2014).
[Crossref] [PubMed]

Z. Phys. (1)

L. Rosenfeld, “Quantenmechanische theorie der natürlichen optischen aktivität von flüssigkeiten und gasen,” Z. Phys. 52, 161–174 (1929).
[Crossref]

Other (4)

M. Nieto-Vesperinas, “Resonant chirality in light scattered from magnetodielectric particles,” arXiv preprint arXiv:1611.02613 (2016).

N. Berova, Comprehensive Chiroptical Spectroscopy, vol. 1 (John Wiley & Sons, 2012).
[Crossref]

D. De, K. P. Ghatak, and S. Bhattacharaya, Quantum Dots and Quantum Cellular Automata (Nova Science Publishers, Inc, 2013).

J. Wu and Z. M. Wang, Quantum Dot Molecules (Springer, 2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Quantum-dot (a) dimer, (b) trimer, and (c) tetramer composed of equal but differently oriented semiconductor quantum dots. The molecules become optically active for certain orientations of dipole moments dj of the fundamental interband transitons inside the quantum dots; a is the distance between the quantum dots in the dimer, trimer, and in the base of the tetramer; b is the height of the tetramer.

Fig. 2
Fig. 2

Optimal configurations of quantum-dot dimers exhibiting the strongest peaks in the CD spectrum for γδE. The dipoles of the upper quantum dots are all in the yz plane. The intensities of peaks in the CD spectrum of dimer (a) exceed the intensities of peaks in the spectra of dimers (b) and (c) by a factor of 3 / 2. Panel (d) shows the transformation between the optimal configurations (c) and (a), which leads to a continuum of intermediate optimal orientations of the quantum-dot dipoles.

Fig. 3
Fig. 3

Quantum-dot trimers with the strongest CD peaks for (a) γB + δE and [(c)–(f)] γA. Trimers in panels (c) through (e) correspond to three critical points of surface R1 A shown in panel (b). Transformation between the two optimal configurations, shown by the green curve in panel (b), is illustrated by the shaded regions in panel (f). The vertical scale in (b) is from −0.6 to 0.6 and the six contour lines are −0.5, −0.3, . . . , 0.5.

Fig. 4
Fig. 4

Energies (upper panels) of four tetramer states and rotatory strengths (lower panels) of the respective interband transitions as functions of azimuth α for a = b and different polar angles ϑ, which determine orientations of the quantum dots constituting the tetramer [see Fig. 1(c)]. The azimuth φ of the fourth dipole affects neither energies nor rotatory strengths.

Tables (2)

Tables Icon

Table 1 Critical points of function R1δE; ϑ0 = (1/2) arccos(−1/3).

Tables Icon

Table 2 Critical points of function R1 A; angles ϑ±, φ±, and ϑ0 are defined in Eqs. (41) and (45).

Equations (64)

Equations on this page are rendered with MathJax. Learn more.

V n ψ n ( r ) ψ m * ( r ) d r = δ nm ,
H = ( E V 12 V 1 N V 21 E V 2 N V N 1 V N 2 E ) .
Ψ μ = c μ 1 ψ 1 + c μ 2 ψ 2 + + c μ N ψ N c μ n ψ n .
R μ = e 2 ε 2 c E g m 2 Re ( p 0 μ [ r × p ] μ 0 ) ,
p μ 0 = Ψ μ | p ^ | 0 = c μ n * ψ n | p ^ | 0 = c μ n * p n
[ r × p ] μ 0 = Ψ μ | r ^ × p ^ | 0 = Ψ μ | r ^ × p n | ψ n = c μ m * ψ m | r ^ × p n | ψ n = c μ n * [ r n × p n ] ,
R μ = σ Re ( c μ n c μ m * ) ( d n [ r m × d m ] ) ,
D μ = | c μ n d n | 2 + σ 2 | c μ n [ r n × d n ] | 2 .
V nm = 1 ε r nm 5 [ r nm 2 ( d n d m ) 3 ( r nm d n ) ( r nm d n ) ] ,
δ E sin ϑ 1 sin ϑ 2 cos ( φ 2 φ 1 ) 2 cos ϑ 1 cos ϑ 2 ,
R 1 , 2 sin ϑ 1 sin ϑ 2 sin ( φ 1 φ 2 ) .
CD ( R 1 , δ E , γ , ω ) R 1 Γ ( E 1 , ω ) + R 2 Γ ( E 2 , ω ) γ ( ω E ) R 1 δ E [ ( ω E + δ E ) 2 + γ 2 ] [ ( ω E δ E ) 2 + γ 2 ] .
δ φ = ± 2 π 3 , ϑ 1 = ϑ 2 = 1 2 arccos ( 1 3 ) 54.7 ° .
g 1 = 4 χ sin δ φ 2 ( cos δ φ 1 ) χ 2 , g 2 = 4 χ sin δ φ 2 ( cos δ φ 1 ) + 4 csc 2 ϑ 1 + χ 2 ,
absolute maximum : ϑ 66.42 ° , φ = π ;
local maximum : ϑ 0 40.20 ° , φ + 53.73 ° ;
saddle point : ϑ + 21.33 ° , φ = 0 .
E 1 = E δ E , E 2 = E + δ E , c 1 = 1 2 ( 1 , 1 ) , c 2 = 1 2 ( 1 , 1 ) ,
δ E = ( sin ϑ 1 sin ϑ 2 cos δ φ 2 cos ϑ 1 cos ϑ 2 ) η , δ φ = φ 1 φ 2 , η = d 2 / ( ε a 3 ) .
R 1 = R 2 = ρ sin ϑ 1 sin ϑ 2 sin δ φ ,
g 1 , 2 = 4 χ sin ϑ 1 sin ϑ 2 sin δ φ 2 ( sin ϑ 1 sin ϑ 2 cos δ φ + cos ϑ 1 cos ϑ 2 1 ) χ 2 sin 2 ϑ 2 ,
2 cos 2 ϑ 1 cot ϑ 2 = cos δ φ sin 2 ϑ 1 ,
2 cos 2 ϑ 2 cot ϑ 1 = cos δ φ sin 2 ϑ 2 ,
2 cos δ φ cot ϑ 1 cot ϑ 2 = cos 2 δ φ ,
δ φ = ± π 4 , ϑ 1 = ϑ 2 = π 2 .
δ φ = ± 2 π 3 , ϑ 1 , 2 = { 1 2 arccos ( 1 3 ) , π 1 2 arccos ( 1 3 ) } ;
δ φ = ± 3 π 4 , ϑ 1 = ϑ 2 = π 2 .
r 1 = ( 0 , a 3 2 , 0 ) , r 2 = ( a 2 , 0 , 0 ) , r 3 = ( a 2 , 0 , 0 ) ,
d 1 = d ( sin ξ cos φ , sin ξ sin φ , cos ξ ) ,
d 2 = d ( sin ϑ cos ( φ + 2 π / 3 ) , sin ϑ sin ( φ + 2 π / 3 ) , cos ϑ ) ,
d 3 = d ( sin ϑ cos ( φ 2 π / 3 ) , sin ϑ sin ( φ 2 π / 3 ) , cos ϑ ) .
( E A A A E B A B E ) ,
A = ( cos ϑ cos ξ 1 4 ( 6 cos 2 φ 1 ) sin ϑ sin ξ ) η , B = ( 1 3 4 ( 1 + 2 cos 2 φ ) sin 2 ϑ ) η .
E 1 = E B , E 2 = E + δ E , E 3 = E + δ E + , δ E ± = 1 2 ( B ± 8 A 2 + B 2 ) ,
c 1 = 1 2 ( 0 , 1 , 1 ) , c 2 = ( δ E + , A , A ) ( δ E + 2 + 2 A 2 ) 1 / 2 , c 3 = ( δ E , A , A ) ( δ E 2 + 2 A 2 ) 1 / 2 ,
R 1 = ρ 3 2 sin 2 ϑ cos φ ,
R 2 = ρ 3 A 2 δ E + sin ( ϑ + ξ ) A sin 2 ϑ 4 A 2 + B δ E + cos φ ,
R 3 = ρ 3 A 2 δ E sin ( ϑ + ξ ) A sin 2 ϑ 4 A 2 + B δ E cos φ .
( 3 cos 3 φ 2 cos φ ) cos 2 ϑ = 3 ( cos 3 φ + 2 cos φ ) cos 4 ϑ ,
3 ( 3 sin 3 φ + 2 sin φ ) sin 2 ϑ = 4 sin φ .
φ = { 0 , π } , ϑ = { ϑ ± , π ϑ ± } , ϑ ± = 1 2 arccos ( 1 ± 649 36 ) .
20 cos 2 φ = 7 ,
12 sin 2 ϑ = 5 ,
φ = { φ ± , 2 π φ ± } , ϑ = { ϑ 0 , π ϑ 0 } ,
φ ± = arccos ( ± 1 2 7 5 ) , ϑ 0 = arcsin ( 1 2 5 3 ) .
r 1 = ( a 2 , a 2 3 , 0 ) , r 2 = ( a 2 , a 2 3 , 0 ) , r 3 = ( 0 , a 3 , 0 ) , r 4 = ( 0 , 0 , b ) ,
d 1 = d ( cos ( α + 2 π / 3 ) , sin ( α + 2 π / 3 ) , 0 ) , d 2 = d ( cos ( α 2 π / 3 ) , sin ( α 2 π / 3 ) , 0 ) ,
d 3 = d ( cos α , sin α , 0 ) , d 4 = d ( sin ϑ cos φ , sin ϑ sin φ , cos ϑ ) .
( E A A B A E A B A A E B B B B E ) ,
A = 1 4 ( 6 cos 2 α 1 ) η , B = 27 a 4 b sin α ( a 2 + 3 b 2 ) 5 / 2 η .
E 1 = E δ E + , E 2 = E δ E , E 3 = E 4 = E + A , δ E ± = A ± A 2 + 3 B 2 ,
c 1 = ( δ E + , δ E + , δ E + , 3 B ) ( 3 δ E + 2 + 9 B 2 ) 1 / 2 , c 2 = ( δ E , δ E , δ E , 3 B ) ( 3 δ E 2 + 9 B 2 ) 1 / 2 ,
c 3 = 1 2 ( 1 , 0 , 1 , 0 ) , c 4 = 1 2 ( 1 , 1 , 0 , 0 ) ,
R 1 = R 2 = ρ 3 B A 2 + 3 B 2 cos α , R 3 = R 4 = 0 .
( E A A B + C A E A B + C A A E 2 C B + C B + C 2 C E ) ,
B = 9 a 3 ( a 2 6 b 2 ) sin ( α φ ) + 3 a 2 sin ( α + φ ) 4 ( a 2 + 3 b 2 ) 5 / 2 η ,
C = 3 3 a 3 ( a 2 6 b 2 ) cos ( α φ ) 3 a 2 cos ( α + φ ) 4 ( a 2 + 3 b 2 ) 5 / 2 η .
E 1 = E 2 A , E 2 = E + δ E , E 3 = E + A , E 4 = E + δ E + ,
δ E ± = 1 2 ( A ± A 2 + 8 ( B 2 + 3 C 2 ) ) ,
c 1 = 1 3 ( 1 , 1 , 1 , 0 ) ,
c 2 = 1 N + ( B + C , B + C , 2 C , δ E + ) ,
c 3 = 1 6 ( B 2 + 3 C 2 ) ( B 3 C , B + 3 C , 2 B , 0 ) ,
c 4 = 1 N ( B + C , B + C , 2 C , δ E ) ,
R 1 = R 3 = 0 , R 2 = R 4 = σ 3 B cos ( α φ ) 3 C sin ( α φ ) A 2 + 8 ( B 2 + 3 C 2 ) b d 2 .

Metrics