Abstract

This paper presents a polarization converter to convert a linearly polarized (LP) incident wave into an outgoing circularly polarized (CP) wave. It is constructed by a 2D array of thin cavities, with each cavity etched with three slots. The front slot is used to couple the LP wave into the cavity, while the backside orthogonal slots are utilized to couple the field out of the cavity with the same amplitude and 90° out-of-phase; subsequently, a CP wave is formed at the other side of the converter. As a proof-of-concept, a sample of the proposed converter is fabricated and measured in the microwave regime. Eventually, a perfect CP wave is demonstrated after the LP wave passes through the converter. The proposed linear-to-circular polarization converter features an extremely low insertion loss of around 0.1 dB and a high polarization conversion efficiency of 0.97.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavity-based linear polarizer immune to the polarization direction of an incident plane wave

Jiang Wang, Zhongxiang Shen, Xiang Gao, and Wen Wu
Opt. Lett. 41(2) 424-427 (2016)

Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals

Linlin Dai, Yuping Zhang, Xiaohan Guo, Yukun Zhao, Shande Liu, and Huiyun Zhang
Opt. Mater. Express 8(10) 3238-3249 (2018)

Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
    [Crossref] [PubMed]
  2. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  3. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express 20(14), 16050–16058 (2012).
    [Crossref] [PubMed]
  4. L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
    [Crossref]
  5. Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
    [Crossref]
  6. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
    [Crossref] [PubMed]
  7. M. Mutlu, A. E. Akosman, and E. Ozbay, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094–2096 (2012).
    [Crossref] [PubMed]
  8. J. Wang, Z. Shen, W. Wu, and K. Feng, “Wideband circular polarizer based on dielectric gratings with periodic parallel strips,” Opt. Express 23(10), 12533–12543 (2015).
    [Crossref] [PubMed]
  9. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
    [Crossref] [PubMed]
  10. S. Yan and G. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
    [Crossref]
  11. M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
    [Crossref]
  12. H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
    [Crossref]
  13. Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
    [Crossref] [PubMed]
  14. J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
    [Crossref]
  15. Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
    [Crossref] [PubMed]
  16. H. Ma, G. Wang, G. Kong, and T. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1723 (2014).
    [Crossref]
  17. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  18. J. Wang, Z. Shen, X. Gao, and W. Wu, “Cavity-based linear polarizer immune to the polarization direction of an incident plane wave,” Opt. Lett. 41(2), 424–427 (2016).
    [Crossref] [PubMed]
  19. S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
    [Crossref]

2016 (2)

2015 (4)

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

J. Wang, Z. Shen, W. Wu, and K. Feng, “Wideband circular polarizer based on dielectric gratings with periodic parallel strips,” Opt. Express 23(10), 12533–12543 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

2014 (3)

H. Ma, G. Wang, G. Kong, and T. Cui, “Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces,” Opt. Mater. Express 4(8), 1717–1723 (2014).
[Crossref]

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

2013 (3)

S. Yan and G. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (2)

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Akosman, A. E.

Alù, A.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Baena, J. D.

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Belov, P. A.

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Bozzi, M.

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

Cahill, R.

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Chen, H.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Chen, S.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Cheng, H.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Cheung, S.

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Chung, K.

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Cong, L.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Cui, T.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Dickie, R.

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

Euler, M.

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

Feng, K.

Feng, Q.

Feng, Y.

Fusco, V.

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Gao, X.

Glybovski, S. B.

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Gu, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Guo, J.

Han, J.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

He, D.

Hong, W.

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

Hu, C.

Huang, C.

Jiang, T.

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation,” Opt. Express 23(21), 27230–27239 (2015).
[Crossref] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Jiang, Y.

Kong, G.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Li, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Li, Z.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, W.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Liu, Z.

Luo, X.

Luo, Y.

Ma, H.

Ma, X.

Mutlu, M.

Ozbay, E.

Pu, M.

Pu, Y.

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Risco, J. P.

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Serebryannikov, A. E.

Shen, Z.

Singh, R.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Slobozhanyuk, A. P.

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Vandenbosch, G.

S. Yan and G. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, G.

Wang, J.

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Winkler, S. A.

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

Wu, K.

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

Wu, W.

Xu, J.

Xu, N.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Xu, Z.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Yan, S.

S. Yan and G. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

Yang, C.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Yuk, T.

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zhang, A.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Zhang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Zhang, W.

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Zhang, Y.

Zhao, J.

Zhao, Y.

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Zhu, B.

Zhu, H.

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. Yan and G. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett. 102(10), 103503 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

H. Zhu, S. Cheung, K. Chung, and T. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antenn. Propag. 61(9), 4615–4623 (2013).
[Crossref]

S. A. Winkler, W. Hong, M. Bozzi, and K. Wu, “Polarization rotating frequency selective surface based on substrate integrated waveguide technology,” IEEE Trans. Antenn. Propag. 58(4), 1202–1213 (2010).
[Crossref]

IET Microw. Antennas Propag. (1)

M. Euler, V. Fusco, R. Dickie, and R. Cahill, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antennas Propag. 4(11), 1764–1772 (2010).
[Crossref]

J. Appl. Phys. (1)

Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, Z. Xu, and A. Zhang, “Wideband selective polarization conversion mediated by three-dimensional metamaterials,” J. Appl. Phys. 115(23), 234506 (2014).
[Crossref]

Laser Photonics Rev. (1)

L. Cong, N. Xu, J. Gu, R. Singh, J. Han, and W. Zhang, “Highly flexible broadband terahertz metamaterial quarter-wave plate,” Laser Photonics Rev. 8(4), 626–632 (2014).
[Crossref]

Nano Lett. (1)

Y. Zhao and A. Alù, “Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates,” Nano Lett. 13(3), 1086–1091 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. B (1)

J. D. Baena, J. P. Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B 92(24), 245413 (2015).
[Crossref]

Phys. Rev. Lett. (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99(6), 063908 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Li, W. Liu, H. Cheng, S. Chen, and J. Tian, “Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface,” Sci. Rep. 5, 18106 (2015).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed linear-to-circular polarization converter and its function, where the electric field arrows indicate the polarization state of the wave. (b) Expended view the detail of a unit cell of the structure.
Fig. 2
Fig. 2 Perspective view the electric field distributions of (a) TM210 and (b) TM120 modes.
Fig. 3
Fig. 3 Photograph of the fabricated polarization converter. (a) Front view. (b) Back view.
Fig. 4
Fig. 4 Performance of the proposed linear-to-circular polarization converter. (a) Reflection characteristic of the x-polarized wave strikes on the converter. (b) Amplitudes of Txx and Tyx. (c) Phase difference between Txx and Tyx. (d) Electric field representation of an LP wave propagating through the converter.
Fig. 5
Fig. 5 Polarization conversion (a) coefficients and (b) efficiency of the proposed linear-to-circular polarization converter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f= 5 c 0 2 ε r W eff ,
[ E ox E oy ]=[ T xx T xy T yx T yy ]×[ E ix E iy ].
PCE= | C + | 2 | C | 2 | C + | 2 + | C | 2 ,

Metrics