Abstract

A novel frequency domain nonlinear compensation method, FD-NC, is proposed for orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) system. By tackling the memory nonlinear impairments from light emitting diodes (LEDs) in the frequency domain rather than in the time domain, the proposed method has much lower computational complexity than the conventional time domain Volterra nonlinear compensation method (TD-NC). Both theoretical derivation and experimental investigation of the proposed method in OFDM based VLC systems with four types of commercial LEDs are presented. The results of experiments show that the proposed low-complexity FD-NC method with a moderate truncation factor achieves a performance comparable to that of the TD-NC. The application of FD-NC method in the bit-power loading OFDM VLC system is also experimentally demonstrated. Compared with the linear equalization case, at a bit error rate (BER) of 3.8 × 10−3 (a), the transmission distance of a 960 Mbps VLC system can be extended from 0.7 m to 1.8 m by the FD-NC, and (b) the achievable system capacity can be enhanced by 18.7%~36.5% for transmission distance in the range of 0.5 m~2 m with the FD-NC. The complexity analysis shows that the required number of real-valued multiplications (RNRM) of the FD-NC is independent of linear or nonlinear memory length. The reduction of RNRM achieved by the FD-NC over the TD-NC becomes more profound for a larger nonlinear memory length or a smaller truncation factor.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems

Jianfeng Li, Zhitong Huang, Xiaoshuang Liu, and Yuefeng Ji
Opt. Express 23(1) 611-619 (2015)

Frequency- and time-domain nonlinear distortion compensation in high-speed OFDM-IMDD LR-PON with high loss budget

Hsing-Yu Chen, Chia-Chien Wei, Che-Yu Lin, Li-Wei Chen, I-Cheng Lu, and Jyehong Chen
Opt. Express 25(5) 5044-5056 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
    [Crossref]
  2. D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
    [Crossref]
  3. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
    [Crossref]
  4. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).
  5. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
    [Crossref]
  6. Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).
  7. K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
    [Crossref]
  8. B. Inan, S. J. Lee, S. Randel, I. Neokosmidis, A. Koonen, and J. Walewski, “Impact of LED nonlinearity on discrete multitone modulation,” J. Opt. Commun. Netw. 1(5), 439–451 (2009).
    [Crossref]
  9. R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 8(4), 1–13 (2016).
    [Crossref]
  10. R. Mitra and V. Bhatia, “Finite dictionary techniques for MSER equalization in RKHS,” Signal, Image and Video Processing (posted 22 November 2016, in press).
    [Crossref]
  11. J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
    [Crossref] [PubMed]
  12. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
    [Crossref]
  13. T. Kamalakis, J. Walewski, and G. Mileounis, “Empirical Volterra-series modeling of commercial light-emitting diodes,” J. Lightwave Technol. 29(14), 2146–2155 (2011).
    [Crossref]
  14. H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
    [Crossref]
  15. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).
  16. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
    [Crossref] [PubMed]
  17. D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
    [Crossref]
  18. M. Uysal, T. Baykas, F. Miramirkhani, N. Serafimovski, and V. Jungnickel, “TG7r1 CIRs channel model document for high-rate PD Communications,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), no. IEEE P802.15–15–0746–01–007a (2015).
  19. S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
    [Crossref]
  20. R. Zhang, J. Li, Z. Huang, and Y. Ji, “Adaptive frequency domain pre-equalization for white-LED nonlinearity in OFDM-based visible light communication systems,” Chin. Opt. Lett. 13(7), 072302 (2015).
    [Crossref]
  21. P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
    [Crossref]
  22. H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
    [Crossref]
  23. F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012).
    [Crossref] [PubMed]

2016 (1)

R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 8(4), 1–13 (2016).
[Crossref]

2015 (6)

J. Li, Z. Huang, X. Liu, and Y. Ji, “Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems,” Opt. Express 23(1), 611–619 (2015).
[Crossref] [PubMed]

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

R. Zhang, J. Li, Z. Huang, and Y. Ji, “Adaptive frequency domain pre-equalization for white-LED nonlinearity in OFDM-based visible light communication systems,” Chin. Opt. Lett. 13(7), 072302 (2015).
[Crossref]

2014 (1)

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

2013 (2)

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

2012 (3)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

F. P. Guiomar, J. D. Reis, A. L. Teixeira, and A. N. Pinto, “Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer,” Opt. Express 20(2), 1360–1369 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2009 (2)

S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
[Crossref]

B. Inan, S. J. Lee, S. Randel, I. Neokosmidis, A. Koonen, and J. Walewski, “Impact of LED nonlinearity on discrete multitone modulation,” J. Opt. Commun. Netw. 1(5), 439–451 (2009).
[Crossref]

2002 (1)

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

1995 (1)

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[Crossref]

1987 (1)

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

Ariyavisitakul, S. L.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

Bassam, S. A.

S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
[Crossref]

Baxley, R. J.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Benyamin-Seeyar, A.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

Bhatia, V.

R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 8(4), 1–13 (2016).
[Crossref]

Bingham, J.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[Crossref]

Burrus, C.

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

Cai, S. Z.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Chang, G. K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Chi, N.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Chow, P. S.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cioffi, J. M.

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[Crossref]

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Eidson, B.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

Falconer, D.

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

Ghannouchi, F. M.

S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
[Crossref]

Grobe, L.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Guiomar, F. P.

Hartlieb, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Heideman, M.

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

Helaoui, M.

S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
[Crossref]

Hilt, J.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Ho, C. H.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Huang, X.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Huang, Z.

Inan, B.

Ji, Y.

Jones, D.

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

Jungnickel, V.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Kalavally, V.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Kamalakis, T.

Karunatilaka, D.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Koonen, A.

Kottke, C.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

Langer, K.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512–3518 (2010).

Lassak, F.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Lee, S. J.

Li, J.

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Liu, X.

Mileounis, G.

Mitra, R.

R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 8(4), 1–13 (2016).
[Crossref]

Neokosmidis, I.

Nerreter, S.

Paraskevopoulos, A.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Parthiban, R.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Pinto, A. N.

Qian, H.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Randel, S.

Reis, J. D.

Schulz, D.

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

Shi, J.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Siuzdak, J.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Sorensen, H.

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

Stepniak, G.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Tao, L.

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Teixeira, A. L.

Vucic, J.

Walewski, J.

Walewski, J. W.

Wang, Y.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

Yao, S. J.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Ying, K.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Yu, Z.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Zafar, F.

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

Zhang, R.

Zhou, G. T.

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

Zhou, T.

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Comm. Surv. and Tutor. (1)

D. Karunatilaka, F. Zafar, V. Kalavally, and R. Parthiban, “LED based indoor visible light communications: state of the art,” IEEE Comm. Surv. and Tutor. 17(3), 1649–1678 (2015).
[Crossref]

IEEE Commun. Mag. (2)

L. Grobe, A. Paraskevopoulos, J. Hilt, D. Schulz, F. Lassak, F. Hartlieb, C. Kottke, V. Jungnickel, and K. Langer, “High-speed visible light communication systems,” IEEE Commun. Mag. 51(12), 60–66 (2013).
[Crossref]

D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag. 40(4), 58–66 (2002).
[Crossref]

IEEE Photonics J. (4)

H. Qian, S. J. Yao, S. Z. Cai, and T. Zhou, “Adaptive postdistortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 6(4), 1–8 (2014).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photonics J. 4(5), 1465–1473 (2012).
[Crossref]

Y. Wang, L. Tao, X. Huang, J. Shi, and N. Chi, “8-Gb/s RGBY LED-Based WDM VLC system employing high-order CAP modulation and hybrid post equalizer,” IEEE Photonics J. 7(6), 1–7 (2015).

R. Mitra and V. Bhatia, “Adaptive sparse dictionary-based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications,” IEEE Photonics J. 8(4), 1–13 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, H. T. Huang, and C. H. Ho, “1.1-Gb/s white-LED-based visible light communication employing carrier-less amplitude and phase modulation,” IEEE Photonics Technol. Lett. 24(19), 1730–1732 (2012).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

IEEE Trans. Acoust. Speech Signal Process. (1)

H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “Real-valued fast Fourier transform algorithms,” IEEE Trans. Acoust. Speech Signal Process. 35(6), 849–863 (1987).
[Crossref]

IEEE Trans. Commun. (1)

P. S. Chow, J. M. Cioffi, and J. Bingham, “A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels,” IEEE Trans. Commun. 43(234), 773–775 (1995).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

S. A. Bassam, M. Helaoui, and F. M. Ghannouchi, “Crossover digital predistorter for the compensation of crosstalk and nonlinearity in MIMO transmitters,” IEEE Trans. Microw. Theory Tech. 57(5), 1119–1128 (2009).
[Crossref]

IEEE Wirel. Commun. (1)

K. Ying, Z. Yu, R. J. Baxley, H. Qian, G. K. Chang, and G. T. Zhou, “Nonlinear distortion mitigation in visible light communications,” IEEE Wirel. Commun. 22(2), 36–45 (2015).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Commun. Netw. (1)

Opt. Express (3)

Other (3)

M. Uysal, T. Baykas, F. Miramirkhani, N. Serafimovski, and V. Jungnickel, “TG7r1 CIRs channel model document for high-rate PD Communications,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), no. IEEE P802.15–15–0746–01–007a (2015).

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

R. Mitra and V. Bhatia, “Finite dictionary techniques for MSER equalization in RKHS,” Signal, Image and Video Processing (posted 22 November 2016, in press).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Illustration of (a) the temporal structure of xL(n) in the Volterra series model, and (b) the cyclicality of the 2nd order nonlinearity term.
Fig. 2
Fig. 2 Schematic diagram of the proposed FD-NC algorithm.
Fig. 3
Fig. 3 Experimental setup of the OFDM based VLC system with different channel equalization methods.
Fig. 4
Fig. 4 Average SNR versus power attenuation for VLC system with (a) red (b) white (c) green and (d) blue LEDs.
Fig. 5
Fig. 5 Average SNR versus (a) the memory length of the 2nd order nonlinearity M2 for the TD-NC and (b) truncation factor α for the FD-NC.
Fig. 6
Fig. 6 SNR distribution under the optimal driving signal power after the FD-NC and the TD-NC for the (a) red (b) white (c) green and (d) blue LED. The insets show the amplitude of the 1st and 2nd order kernels of FD-NC.
Fig. 7
Fig. 7 The convergence performance of the proposed FD-NC algorithm. The kernels of (a) the 15th subcarrier, (b) the 120th subcarrier and (c) the 230th subcarrier.
Fig. 8
Fig. 8 SNR performance of the FD-NC versus training symbol number with different α for the (a) red, (b) white, (c) green and (d) blue LEDs.
Fig. 9
Fig. 9 (a) The measured BER versus system capacity at 50 cm, and (b) the corresponding bit-power loading profile with Chow algorithm for a system capacity of 1.12 Gbps.
Fig. 10
Fig. 10 (a) The measured BER performance at different transmission distance at system capacity of 960 Mbps, and (b) the maximum capacity at different transmission distance for the BER of 3.8 × 10−3.
Fig. 11
Fig. 11 Ratio of the RNRM of the TD-NC and FD-NC in one OFDM symbol with different (a) truncation factors α and (b) the memory length of the 2nd order nonlinearity M2. The oversampling ratio S/N is 2.

Tables (1)

Tables Icon

Table 1 Complexity analysis of two nonlinearity compensation methods

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

y(n)= h 0 + i=0 N 1 1 h 1 (i)x(ni)+ i=0 N 2 1 j=i N 2 1 h 2 (i,j)x(ni)x(nj) + i=0 N 3 1 j=i N 3 1 k=j N 3 1 h 3 (i,j,k)x(ni)x(nj)x(nk)+...
y(n)= h 0 + i=0 N 1 1 h 1 (i)x(ni)+ i=0 N 2 1 j=i N 2 1 h 2 (i,j)x(ni)x(nj) = h 0 + i=0 N 1 1 h 1 (i)x(ni)+ i=0 N 2 1 h 2 (i,i)x(ni)x(ni) + i=0 N 2 2 h 2 (i,i+1)x(ni)x(ni1) +...+ i=0 0 h 2 (i,i+ N 2 1)x(ni)x(n N 2 +1)
y(n)= h 0 + i=0 N 1 1 h 1 (i)x(ni)+ i=0 N 2 1 h 20 (i) x 0 (ni) +...+ i=0 0 h 2( N 2 1) (i) x N 2 1 (ni) = h 0 + h 1 (n)x(n)+ L=0 N 2 1 h 2L (n) x L (n)
z(n)= β 0 + i=0 M 1 1 β 1 (i)y(ni)+ i=0 M 2 1 β 20 (i) y 0 (ni) +...+ i=0 0 β 2( M 2 1) (i) y M 2 1 (ni) = β 0 + β 1 (n)y(n)+ L=0 M 2 1 β 2L (n) y L (n)
z(n)= β 0 + i=0 M 1 1 β 1 (i)y(ni)+ i=0 M 2 1 β 20 (i) y 0 (ni)+ ... i=0 M 2 α β 2(α1) (i) y α1 (ni) = β 0 + β 1 (n)y(n)+ L=0 α1 β 2L (i) y L (n)
Z(n)=DFT{ z(n) }= A 0 + A 1 (n)Y(n)+ L=0 α1 A 2L (n) Y L (n)
A 0 (n)= [ 0 0 0 ] T , P 0 (n)= δ 1 I,
Y i (n)= [ Y i (n) Y 0 i (n) Y α1 i (n) ] T
Z ^ i (n)= ( A i (n) ) T Y i (n)
e(i)= S i (n) Z ^ i (n)
K i (n)= P i1 (n) ( Y i (n) ) { λ+ ( Y i (n) ) T P i1 (n) ( Y i (n) ) } 1
P i (n)= λ 1 [ P i1 (n) K i (n) ( Y i (n) ) T P i1 (n)]
A i (n)= A i1 (n)+e(i) K i (n)

Metrics