Abstract

The performance of sensitive spectroscopic methods in the mid-IR is often limited by fringing due to parasitic etalons and the background noise in mid-infrared detectors. In particular, the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy (NICE-OHVMS), which is capable of determining the frequencies of strong rovibrational transitions of molecular ions with sub-MHz uncertainty, needs improved sensitivity in order to probe weaker transitions. In this work, we have implemented up-conversion detection with NICE-OHVMS in the 3.2 – 3.9 µm region to enable the use of faster and more sensitive detectors which cover visible wavelengths. The higher bandwidth enabled detection at optimized heterodyne frequencies, which increased the overall signal from the H3+ cation by a factor of three and was able to resolve sub-Doppler features which had previously overlapped. Also, we demonstrate the effectiveness of Brewster-plate spoilers to remove fringes due to parasitic etalons in a cavity enhanced technique. Together, these improvements reduced the instrument’s noise equivalent absorption to 5.9×10−11 cm−1 Hz−1/2, which represents a factor of 34 improvement in sensitivity compared to previous implementations of NICE-OHVMS. This work will enable extended high-precision spectroscopic surveys of H3+ and other important molecular ions.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy

Patrick Ehlers, Alexandra C. Johansson, Isak Silander, Aleksandra Foltynowicz, and Ove Axner
J. Opt. Soc. Am. B 31(12) 2938-2945 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. P. Snow and V. N. Bierbaum, “Ion chemistry in the interstellar medium,” Annu. Rev. Anal. Chem. 1, 229–259 (2008).
    [Crossref]
  2. L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
    [Crossref]
  3. H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
    [Crossref]
  4. O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
    [Crossref] [PubMed]
  5. J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
    [Crossref] [PubMed]
  6. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1) 6–15 (1998).
    [Crossref]
  7. C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
    [Crossref]
  8. A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
    [Crossref] [PubMed]
  9. A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
    [Crossref]
  10. C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
    [Crossref]
  11. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13) 1725–1727 (2005).
    [Crossref] [PubMed]
  12. M. J. Khan, J. C. Chen, and S. Kaushik, “Optical detection of terahertz radiation by using nonlinear parametric upconversion,” Opt. Lett. 32(22), 3248–3250 (2007).
    [Crossref] [PubMed]
  13. K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
    [Crossref]
  14. P. Ehlers, A. C. Johansson, I. Silander, A. Foltynowicz, and O. Axner, “Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 31(12), 2938–2945 (2014).
    [Crossref]
  15. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2(8) 1320–1326 (1985).
    [Crossref]
  16. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B 2(9), 1464–1470 (1985).
    [Crossref]
  17. K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
    [Crossref]
  18. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
    [Crossref]
  19. B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35(8), 1266–1268 (2010).
    [Crossref] [PubMed]
  20. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25(7) 1166–1177 (2008).
    [Crossref]
  21. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
    [Crossref]
  22. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http:/www.as-photonics.com/SNLO.htmls
  23. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
    [Crossref]
  24. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
    [Crossref]

2016 (1)

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

2015 (1)

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

2014 (3)

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

P. Ehlers, A. C. Johansson, I. Silander, A. Foltynowicz, and O. Axner, “Use of etalon-immune distances to reduce the influence of background signals in frequency-modulation spectroscopy and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 31(12), 2938–2945 (2014).
[Crossref]

2013 (1)

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

2012 (3)

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

2010 (1)

2008 (2)

2007 (1)

2005 (2)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30(13) 1725–1727 (2005).
[Crossref] [PubMed]

1998 (1)

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
[Crossref]

1985 (2)

1984 (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

1983 (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Aellen, T.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Alijah, A.

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Amano, T.

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Asvany, O.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
[Crossref] [PubMed]

Axner, O.

Beck, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Begemann, M. H.

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

Bierbaum, V. N.

T. P. Snow and V. N. Bierbaum, “Ion chemistry in the interstellar medium,” Annu. Rev. Anal. Chem. 1, 229–259 (2008).
[Crossref]

Bjorklund, G. C.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Chen, H. -C.

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Chen, J. C.

Crabtree, K. N.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Diamanti, E.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Ehlers, P.

Faist, J.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Fejer, M. M.

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Gehrtz, M.

Gisin, N.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Gudeman, C. S.

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

Hall, J. L.

J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15(1) 6–15 (1998).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Hodges, J. N.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Hsiao, C. -Y.

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Jenkins, P. A.

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

Johansson, A. C.

Karstad, K.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Kaushik, S.

Kelly, J. E.

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

Khan, M. J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

Kocheril, G. S.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Krieg, J.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
[Crossref] [PubMed]

Langrock, C.

Lodi, L.

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Ma, L.-S.

Ma, W.

Markus, C. R.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

McCall, B. J.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35(8), 1266–1268 (2010).
[Crossref] [PubMed]

Mills, A. A.

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
[Crossref]

Müller, H. S. P.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Peng, J. -L.

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Perry, A. J.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

Pfaff, J.

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

Polyansky, O. L.

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Roussev, R. V.

Saykally, R. J.

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

Schlemmer, S.

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
[Crossref] [PubMed]

Shy, J. -T.

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Silander, I.

Siller, B. M.

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

B. M. Siller, A. A. Mills, and B. J. McCall, “Cavity-enhanced velocity modulation spectroscopy,” Opt. Lett. 35(8), 1266–1268 (2010).
[Crossref] [PubMed]

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
[Crossref]

Snow, T. P.

T. P. Snow and V. N. Bierbaum, “Ion chemistry in the interstellar medium,” Annu. Rev. Anal. Chem. 1, 229–259 (2008).
[Crossref]

Stefanov, A.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Tennyson, J.

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

Webster, C. R.

Wegmuller, M.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
[Crossref]

Whittaker, E. A.

Yamamoto, Y.

Ye, J.

Zbinden, H.

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Zobov, N. F.

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Annu. Rev. Anal. Chem. (1)

T. P. Snow and V. N. Bierbaum, “Ion chemistry in the interstellar medium,” Annu. Rev. Anal. Chem. 1, 229–259 (2008).
[Crossref]

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2) 97–105 (1983).
[Crossref]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2) 131–139 (1993).
[Crossref]

Astrophys. J. (1)

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817(2), 138 (2016).
[Crossref]

Chem. Phys. Lett. (1)

K. N. Crabtree, J. N. Hodges, B. M. Siller, A. J. Perry, J. E. Kelly, P. A. Jenkins, and B. J. McCall, “Sub-Doppler mid-infrared spectroscopy of molecular ions,” Chem. Phys. Lett. 551, 1–6 (2012).
[Crossref]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39(8), 3597–3639 (1968).
[Crossref]

J. Chem. Phys. (3)

J. N. Hodges, A. J. Perry, P. A. Jenkins, B. M. Siller, and B. J. McCall, “High-precision high-accuracy rovibrational spectroscopy of molecular ions,” J. Chem. Phys. 139(16), 164201 (2013).
[Crossref] [PubMed]

C. S. Gudeman, M. H. Begemann, J. Pfaff, and R. J. Saykally, “Velocity-modulated infrared laser spectroscopy of molecular ions: the ν1 band of HNN+,” J. Chem. Phys. 78(9) 5837–5838 (1983).
[Crossref]

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “Communication: High precision sub-Doppler infrared spectroscopy of the HeH+ ion,” J. Chem. Phys. 141(10), 101101 (2014).
[Crossref] [PubMed]

J. Mol. Spectrosc. (1)

A. J. Perry, J. N. Hodges, C. R. Markus, G. S. Kocheril, and B. J. McCall, “High-precision, R-branch transition frequencies in the ν2 fundamental band of H3+,” J. Mol. Spectrosc. 317(10), 71–73 (2015).
[Crossref]

J. Opt. Soc. Am. B (5)

Opt. Laser Eng. (1)

K. Karstad, A. Stefanov, M. Wegmuller, H. Zbinden, N. Gisin, T. Aellen, M. Beck, and J. Faist, “Detection of mid-IR radiation by sum frequency generation for free space optical communication,” Opt. Laser Eng. 43, 537–544 (2005).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30(5), 2827–2829 (1984).
[Crossref]

Phys. Rev. A. (1)

L. Lodi, O. L. Polyansky, J. Tennyson, A. Alijah, and N. F. Zobov, “QED corrections for H3+,” Phys. Rev. A. 89(3), 032505 (2014).
[Crossref]

Phys. Rev. Lett. (1)

H. -C. Chen, C. -Y. Hsiao, J. -L. Peng, T. Amano, and J. -T. Shy, “High-resolution sub-Doppler Lamb dips of the ν2 fundamental band of H3+,” Phys. Rev. Lett. 109(26) 263002 (2012).
[Crossref]

Rev. Sci. Instrum. (1)

O. Asvany, J. Krieg, and S. Schlemmer, “Frequency comb assisted mid-infrared spectroscopy of cold molecular ions,” Rev. Sci. Instrum. 83(9) 093110 (2012).
[Crossref] [PubMed]

Other (1)

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http:/www.as-photonics.com/SNLO.htmls

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental layout. YDFL: ytterbium doped fiber laser, AOM: acousto-optic modulator, EOM: electro-optic modulator, OPO: optical parametric oscillator, PZT: piezoelectric transducer, DPSS: diode-pumped solid-state laser, fhet: Heterodyne frequency, fPDH: Pound-Drever-Hall frequency, Det. 1: mid-IR transmission detector (Vigo PVM-10.6), BR Det.: back reflection detector (Boston Electronics Vigo PVI-4TE-6), Det. 2: mid-IR transmission detector (Boston Electronics Vigo PVI–4TE-6), Det. 3: silicon detector (Thorlabs DET025A), DM: dichroic mirror, PPLN: periodically poled lithium niobate crystal, and LP: longpass filter.

Fig. 2
Fig. 2

A NICE-OHVMS scan of the R(1,0) transition of H 3 +, centered at 81720377 MHz (2725.8984 cm−1) with the heterodyne frequency set to 1×FSR of the cavity (77.304 MHz). The in-phase (red) and quadrature (blue) components of the velocity modulation signal are plotted for both the in-phase (left) and quadrature (right) components of the heterodyne signal. This scan was recorded with Det. 1.

Fig. 3
Fig. 3

A depiction of the change in optical path length (OPL) to an etalon of length l when a window with a refractive index n2, thickness d, and incident angle θi is placed between the reflective surfaces.

Fig. 4
Fig. 4

Comparison between the baseline when the galvanometer is on (black trace) or off (red trace). The discontinuities in the fringe every ∼200 MHz are caused when the cavity is relocked, which changes the optical path length of the cavity.

Fig. 5
Fig. 5

Comparison between two scans of the H 3 + R(1,0) transition with the galvanometer on (top) and galvanometer off (bottom). All traces are of the quadrature component of the lock-in amplifiers. Offsets were added for clarity.

Fig. 6
Fig. 6

The Allan deviation of the equivalent absorption as a function of integration time τ. The measurement was taken over 180 s with the H2 discharge on. The channels shown had the best noise characteristics for each detector.

Fig. 7
Fig. 7

A NICE-OHVMS scan of the R(1,0) transition of H 3 + taken with up-conversion detection with Det. 3. The in-phase (red) and quadrature (blue) components of the velocity modulation signal are plotted for both the in-phase (left) and quadrature (right) components of the heterodyne signal. The quadrature component of mixer 2 had a S/N of 14700.

Fig. 8
Fig. 8

The in-phase component of mixer 2 of the same scan as Fig. 7, which was observed using up-conversion detection. After scanning past the transition, the sensitivity of the lock-in amplifier was increased to reveal background signals in the baseline.

Fig. 9
Fig. 9

A comparison between scans taken with the heterodyne frequency set to 1, 3, and 5×FSR of the cavity with Det. 2. The in-phase component of velocity modulation is shown in red and the quadrature component in blue. The output of the mixers were set for absorption and dispersion shown on the left and right respectively. The vertical dashes are centered at the rest frequency and separated in half-integer multiples of the heterodyne frequency to indicate the expected Lamb dip frequencies. The peak-to-peak signal of all four channels summed in quadrature is denoted as Squad.

Tables (1)

Tables Icon

Table 1 Technical specifications for the three detector used in this study, including the effective NEP. The noise equivalent power (NEP) for each detector is reported at 10.6 µm, 6 µm, and 730 nm for Det. 1, Det. 2, and Det. 3 respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ OPL = d 1 [ cos ( θ i 1 θ r 1 ) + n 2 ] d 2 [ cos ( θ i 2 θ r 2 ) + n 2 ]
Δ ν = ν Δ OPL OPL
Δ ν FSR = 2 n ν Δ OPL c = 2 n Δ OPL λ
NEP e f f = NEP D e t .3 / ( η D F G × P p u m p )
NEP e f f = NEP D e t .2 / ( P i n c / P t o t )
α c a l = V l / ( G l × G R F ) V D C × 1 L × ( 2 f / π ) × J 0 ( β ) × J 1 ( β )