Abstract

We report on the crystal growth, spectroscopic investigation and laser performance of Tm3+-doped monoclinic magnesium tungstate (Tm:MgWO4), for the first time, to the best of our knowledge. A high-quality crystal has been grown by the top seeded solution growth method. The relevant spectroscopic properties are characterized in terms of absorption, luminescence and Raman spectroscopy. Judd-Ofelt (J-O) analysis is performed to evaluate the spontaneous emission probabilities and the radiative lifetimes. The absorption, stimulated-emission and gain cross-section spectra are determined for the principal light polarizations. The first laser action in the 2 μm spectral range is demonstrated in the regime of continuous-wave operation with a maximum output power of 775 mW and a slope efficiency of 39%.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal

Lizhen Zhang, Weidong Chen, Jieling Lu, Haifeng Lin, Lingyun Li, Guofu Wang, Ge Zhang, and Zhoubin Lin
Opt. Mater. Express 6(5) 1627-1634 (2016)

Crystal growth, optical spectroscopy, and continuous-wave laser operation of co-doped (Ho,Tm):KLu(WO4)2 monoclinic crystals

Venkatesan Jambunathan, Andreas Schmidt, Xavier Mateos, Maria Cinta Pujol, Uwe Griebner, Valentin Petrov, Carlos Zaldo, Magdalena Aguiló, and Francesc Díaz
J. Opt. Soc. Am. B 31(7) 1415-1421 (2014)

Disordered Tm:Ca9La(VO4)7: a novel crystal with potential for broadband tunable lasing

Z. Zhang, P. Loiko, H. Wu, X. Mateos, J. M. Serres, H. F. Lin, W. D. Chen, G. Zhang, L. Z. Zhang, F. Díaz, M. Aguiló, V. Petrov, U. Griebner, Y. C. Wang, E. Vilejshikova, K. Yumashev, and Z. B. Lin
Opt. Mater. Express 7(2) 484-493 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
    [Crossref]
  2. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. A. Robinson, “Coherent lidar airborne wind sensor II: flight-test results at 2 and 10 νm,” Appl. Opt. 35(36), 7117–7127 (1996).
    [Crossref] [PubMed]
  3. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  4. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
    [Crossref] [PubMed]
  5. V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
    [Crossref]
  6. M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
    [Crossref]
  7. V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
    [Crossref]
  8. J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
    [Crossref]
  9. E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
    [Crossref]
  10. V. B. Kravchenko, “Crystal structure of the monoclinic form of magnesium tungstate MgWO4,” J. Struct. Chem. 10(1), 139–140 (1969).
    [Crossref]
  11. V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
    [Crossref]
  12. F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
    [Crossref]
  13. L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
    [Crossref]
  14. L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).
  15. L. Zhang, W. Chen, J. Lu, H. Lin, L. Li, G. Wang, G. Zhang, and Z. Lin, “Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal,” Opt. Mater. Express 6(5), 1627–1634 (2016).
    [Crossref]
  16. L. F. Johnson, “Optical maser characteristics of rare-earth ions in crystals,” J. Appl. Phys. 34(4), 897–909 (1963).
    [Crossref]
  17. K. Nassau and G. M. Loiacono, “Calcium tungstate-III: Trivalent rare earth substitution,” J. Phys. Chem. Solids 24(12), 1503–1510 (1963).
    [Crossref]
  18. A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
    [Crossref]
  19. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  20. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
    [Crossref]
  21. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
    [Crossref]
  22. C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
    [Crossref]
  23. A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
    [Crossref]
  24. A. A. Kaminskii, H. J. Eichler, K. Ueda, N. V. Klassen, B. S. Redkin, L. E. Li, J. Findeisen, D. Jaque, J. García-Sole, J. Fernández, and R. Balda, “Properties of Nd3+-doped and undoped tetragonal PbWO4, NaY(WO4)2, CaWO4, and undoped monoclinic ZnWO4 and CdWO4 as laser-active and stimulated raman scattering-active crystals,” Appl. Opt. 38(21), 4533–4547 (1999).
    [Crossref] [PubMed]
  25. P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
    [Crossref]
  26. M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser,” Appl. Opt. 51(14), 2701–2705 (2012).
    [Crossref] [PubMed]
  27. M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
    [Crossref]
  28. H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
    [Crossref] [PubMed]

2016 (3)

2015 (2)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

2013 (1)

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

2012 (3)

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser,” Appl. Opt. 51(14), 2701–2705 (2012).
[Crossref] [PubMed]

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

2011 (1)

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

2009 (2)

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
[Crossref]

2008 (3)

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
[Crossref]

2007 (1)

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

2004 (2)

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

2003 (1)

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

1999 (1)

1998 (1)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

1996 (1)

1992 (1)

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

1969 (1)

V. B. Kravchenko, “Crystal structure of the monoclinic form of magnesium tungstate MgWO4,” J. Struct. Chem. 10(1), 139–140 (1969).
[Crossref]

1963 (2)

L. F. Johnson, “Optical maser characteristics of rare-earth ions in crystals,” J. Appl. Phys. 34(4), 897–909 (1963).
[Crossref]

K. Nassau and G. M. Loiacono, “Calcium tungstate-III: Trivalent rare earth substitution,” J. Phys. Chem. Solids 24(12), 1503–1510 (1963).
[Crossref]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Achim, A.

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

Aguilo, M.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Aguiló, M.

Ames, L. L.

Balda, R.

Barnes, N. P.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Belletti, A.

E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
[Crossref]

Bernd, H. W.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Brik, M. G.

E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
[Crossref]

Brinkmann, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Brockman, P.

Calloway, R. S.

Cano-Torres, J. M.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Carvajal, J. J.

Cascales, C.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Cavalli, E.

E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
[Crossref]

Chen, W.

Chernyak, D. M.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Choi, S. Y.

Cinta Pujol, M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Danevich, F. A.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Danicke, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Di Bartolo, B.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Diaz, F.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Díaz, F.

Dodson, C. M.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Dubovik, A. M.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Eichler, H. J.

Fernández, J.

Findeisen, J.

Forney, P.

Gaponenko, M. S.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

García-Sole, J.

Gavalda, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Gheorghe, C.

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

Gheorghe, L.

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

Gospodinov, M. M.

M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
[Crossref]

Griebner, U.

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser,” Appl. Opt. 51(14), 2701–2705 (2012).
[Crossref] [PubMed]

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Grinyov, B. V.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Guell, F.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Gusakova, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Han, X.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Hawley, J. G.

Henry, S.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Huang, Y.

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

Iliev, M. N.

M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
[Crossref]

Jaque, D.

Johnson, L. F.

L. F. Johnson, “Optical maser characteristics of rare-earth ions in crystals,” J. Appl. Phys. 34(4), 897–909 (1963).
[Crossref]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Kaminskii, A. A.

Kapustyanyk, V.

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Keller, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Kisel’, V. E.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Klassen, N. V.

Klein, S. H.

Koopmann, P.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Kränkel, C.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Kraus, H.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Kravchenko, V. B.

V. B. Kravchenko, “Crystal structure of the monoclinic form of magnesium tungstate MgWO4,” J. Struct. Chem. 10(1), 139–140 (1969).
[Crossref]

Kudovbenko, V. M.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Kuleshov, N.

Kuleshov, N. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Li, L.

L. Zhang, W. Chen, J. Lu, H. Lin, L. Li, G. Wang, G. Zhang, and Z. Lin, “Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal,” Opt. Mater. Express 6(5), 1627–1634 (2016).
[Crossref]

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

Li, L. E.

Lin, H.

Lin, Z.

L. Zhang, W. Chen, J. Lu, H. Lin, L. Li, G. Wang, G. Zhang, and Z. Lin, “Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal,” Opt. Mater. Express 6(5), 1627–1634 (2016).
[Crossref]

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

Litvinchuk, A. P.

M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
[Crossref]

Liu, J.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Loiacono, G. M.

K. Nassau and G. M. Loiacono, “Calcium tungstate-III: Trivalent rare earth substitution,” J. Phys. Chem. Solids 24(12), 1503–1510 (1963).
[Crossref]

Loiko, P.

Loiko, P. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Lu, J.

Lupei, A.

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

Lupei, V.

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

Mandrik, A. V.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Massons, J.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Mateos, X.

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser,” Appl. Opt. 51(14), 2701–2705 (2012).
[Crossref] [PubMed]

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Medina, F. D.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

Mikhailik, V. B.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Nagornaya, L. L.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Nassau, K.

K. Nassau and G. M. Loiacono, “Calcium tungstate-III: Trivalent rare earth substitution,” J. Phys. Chem. Solids 24(12), 1503–1510 (1963).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

Ott, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Otto, R. G.

Panasyuk, M.

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Pavlyuk, A. A.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Petrov, V.

P. Loiko, X. Mateos, S. Y. Choi, F. Rotermund, J. M. Serres, M. Aguiló, F. Díaz, K. Yumashev, U. Griebner, and V. Petrov, “Vibronic thulium laser at 2131 nm Q-switched by single-walled carbon nanotubes,” J. Opt. Soc. Am. B 33(11), D19–D27 (2016).
[Crossref]

P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
[Crossref] [PubMed]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

M. Segura, X. Mateos, M. C. Pujol, J. J. Carvajal, M. Aguiló, F. Díaz, U. Griebner, and V. Petrov, “Diode-pumped 2 μm vibronic (Tm3+, Yb3+):KLu(WO4)2 laser,” Appl. Opt. 51(14), 2701–2705 (2012).
[Crossref] [PubMed]

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Podviyanuk, R. B.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Polischuk, O. G.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Prots, Y.

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Pujol, M. C.

Redkin, B. S.

Rico, M.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Rivier, S.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Robinson, P. A.

Rotermund, F.

Segura, M.

Serrano, M. D.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Serres, J. M.

Shcherbitskii, V. G.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Silvestre, Ò.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Sole, R. M.

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

Solé, R. M.

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Steakley, B. C.

Stone, R.

Sun, S.

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

Swanson, D.

Targ, R.

Theisen, D.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Tsybulskyi, V.

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Tupitsyna, I. A.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Ueda, K.

Vasylechko, L.

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

Vostretsov, Y. Y.

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Walsh, B. M.

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

Wang, G.

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

L. Zhang, W. Chen, J. Lu, H. Lin, L. Li, G. Wang, G. Zhang, and Z. Lin, “Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal,” Opt. Mater. Express 6(5), 1627–1634 (2016).
[Crossref]

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

Wang, H.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

Yasyukevich, A. S.

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

Yu, Y.

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

Yuan, F.

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

Yumashev, K.

Yumashev, K. V.

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

Zaldo, C.

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

Zarifis, V.

Zhang, G.

Zhang, L.

L. Zhang, W. Chen, J. Lu, H. Lin, L. Li, G. Wang, G. Zhang, and Z. Lin, “Characterization of growth, optical properties, and laser performance of monoclinic Yb:MgWO4 crystal,” Opt. Mater. Express 6(5), 1627–1634 (2016).
[Crossref]

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

Zhang, Q. N.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

Zhou, Y. D.

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

Zia, R.

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

M. S. Gaponenko, P. A. Loiko, N. V. Gusakova, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermal lensing and microchip laser performance of Ng-cut Tm3+:KY(WO4)2 crystal,” Appl. Phys. B 108(3), 603–607 (2012).
[Crossref]

CrystEngComm (1)

L. Li, Y. Yu, G. Wang, L. Zhang, and Z. Lin, “Crystal growth, spectral properties and crystal field analysis of Cr3+:MgWO4,” CrystEngComm 15(30), 6083–6089 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

V. Petrov, F. Guell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40(9), 1244–1251 (2004).
[Crossref]

J. Appl. Phys. (3)

B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83(5), 2772–2787 (1998).
[Crossref]

L. F. Johnson, “Optical maser characteristics of rare-earth ions in crystals,” J. Appl. Phys. 34(4), 897–909 (1963).
[Crossref]

A. Lupei, V. Lupei, C. Gheorghe, L. Gheorghe, and A. Achim, “Multicenter structure of the optical spectra and the charge-compensation mechanisms in Nd:SrWO4 laser crystals,” J. Appl. Phys. 104(8), 083102 (2008).
[Crossref]

J. Appl. Spectrosc. (1)

A. S. Yasyukevich, V. G. Shcherbitskii, V. E. Kisel’, A. V. Mandrik, and N. V. Kuleshov, “Integral method of reciprocity in the spectroscopy of laser crystals with impurity centers,” J. Appl. Spectrosc. 71(2), 202–208 (2004).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511–520 (1962).
[Crossref]

J. Lumin. (1)

L. Zhang, Y. Huang, S. Sun, F. Yuan, Z. Lin, and G. Wang, “Thermal and spectral characterization of Cr3+:MgWO4 – a promising tunable laser material,” J. Lumin. 169, 161–164 (2016).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (2)

K. Nassau and G. M. Loiacono, “Calcium tungstate-III: Trivalent rare earth substitution,” J. Phys. Chem. Solids 24(12), 1503–1510 (1963).
[Crossref]

E. Cavalli, A. Belletti, and M. G. Brik, “Optical spectra and energy levels of the Cr3+ ions in MWO4 (M = Mg, Zn, Cd) and MgMoO4 crystals,” J. Phys. Chem. Solids 69(1), 29–34 (2008).
[Crossref]

J. Phys. Condens. Matter (1)

V. B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, and L. Vasylechko, “Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system,” J. Phys. Condens. Matter 20(36), 365219 (2008).
[Crossref]

J. Struct. Chem. (1)

V. B. Kravchenko, “Crystal structure of the monoclinic form of magnesium tungstate MgWO4,” J. Struct. Chem. 10(1), 139–140 (1969).
[Crossref]

Laser Photonics Rev. (1)

V. Petrov, M. Cinta Pujol, X. Mateos, Ò. Silvestre, S. Rivier, M. Aguiló, R. M. Solé, J. Liu, U. Griebner, and F. Díaz, “Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host,” Laser Photonics Rev. 1(2), 179–212 (2007).
[Crossref]

Nucl. Instrum. Meth. A (1)

F. A. Danevich, D. M. Chernyak, A. M. Dubovik, B. V. Grinyov, S. Henry, H. Kraus, V. M. Kudovbenko, V. B. Mikhailik, L. L. Nagornaya, R. B. Podviyanuk, O. G. Polischuk, I. A. Tupitsyna, and Y. Y. Vostretsov, “MgWO4 – A new crystal scintillator,” Nucl. Instrum. Meth. A 608(1), 107–115 (2009).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

Phys. Rev. B (3)

J. M. Cano-Torres, M. Rico, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, V. Petrov, U. Griebner, X. Mateos, P. Koopmann, and C. Kränkel, “Comparative study of crystallographic, spectroscopic, and laser properties of Tm3+ in NaT(WO4)2 (T = La, Gd, Y, and Lu) disordered single crystals,” Phys. Rev. B 84(17), 174207 (2011).
[Crossref]

M. N. Iliev, M. M. Gospodinov, and A. P. Litvinchuk, “Raman spectroscopy of MnWO4,” Phys. Rev. B 80(21), 212302 (2009).
[Crossref]

C. M. Dodson and R. Zia, “Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths,” Phys. Rev. B 86(12), 125102 (2012).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Wang, F. D. Medina, Y. D. Zhou, and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Phys. Rev. B Condens. Matter 45(18), 10356–10362 (1992).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, “Cw high power IR-laser at 2 μm for minimally invasive surgery,” Proc. SPIE 5142, 96–100 (2003).
[Crossref]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Photograph of the as-grown Tm:MgWO4 boule; (b) X-ray diffraction pattern of the powdered as-grown Tm:MgWO4 crystal.

Fig. 2
Fig. 2

(a) RT polarized absorption of 0.89 at.% Tm:MgWO4, α is the absorption coefficient; (b) RT absorption cross-section, σabs, spectra corresponding to the 3H63H4 transition.

Fig. 3
Fig. 3

Normalized RT photoluminescence spectra of Tm:MgWO4 under 802 nm excitation for light polarizations E || X, Y and Z.

Fig. 4
Fig. 4

(a)-(c) RT absorption (σabs) and stimulated-emission (σe) cross-section spectra for the 3H63F4 transition of Tm3+ in MgWO4 for light polarizations E || X (a), E || Y (b) and E || Z (c). The σe spectra are derived with the modified reciprocity method.

Fig. 5
Fig. 5

Decay curve of the Tm3+ luminescence from the 3F4 state for a 0.89 at.% Tm:MgWO4 crystal: symbols –experimental data, solid line - single-exponential fit, excitation wavelength – 802 nm, emission wavelength – 1850 nm.

Fig. 6
Fig. 6

(a)-(c) Gain cross-section σgain = βσe – (1 – β)σabs for the 3F43H6 transition of Tm3+ in MgWO4 and light polarization E || X (a), E || Y (b) and E || Z (c), β = N(3F4)/NTm is the inversion ratio.

Fig. 7
Fig. 7

(a)-(c) Polarized Raman spectra of the Tm:MgWO4 crystal for X(_)X (a), Y(_)Y (b) and Z(_)Z (c) geometries (the excitation wavelength is 514 nm) and comparison of the Raman spectra of Tm:MgWO4, Tm:KLu(WO4)2 (KLuW) and Tm:NaGd(WO4)2 (NaGdW) crystals.

Fig. 8
Fig. 8

Scheme of the Tm:MgWO4 laser: LD – laser diode, PM – pump mirror, OC – output coupler.

Fig. 9
Fig. 9

CW Tm:MgWO4 laser: (a) input-output dependences, η – slope efficiency; (b) typical laser emission spectra measured at Pabs = 2.17 W.

Tables (3)

Tables Icon

Table 1 Experimental and Calculated Absorption Oscillator Strengths for Tm:MgWO4 Crystal.

Tables Icon

Table 2 Calculated Emission Probabilities for Tm3+ in MgWO4.

Tables Icon

Table 3 Raman-Active Modes Observed in Tm:MgWO4.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f exp (JJ')= m e c 2 π e 2 N Tm λ 2 Γ(JJ'),
f calc (JJ')= 8 3h(2J'+1)λ ( n 2 +2) 2 9n S calc (JJ')+ f MD (JJ'),
S calc (JJ')= k=2,4,6 U (k) Ω k , where U (k) = (4 f n )SLJ|| U k ||(4 f n )S'L'J' 2 .
A calc (JJ')= 64 π 4 e 2 3h(2J'+1) λ 3 n ( n 2 +2 3 ) 2 S ED calc (JJ')+ A MD (JJ').
τ rad = 1 A tot where A tot = J' A calc (J J ) ,
B(JJ')= A calc (JJ') J' A calc (JJ') .
σ e i (λ)= 1 8π n 2 τ rad c 3 σ abs i (λ)exp(hc/(kTλ)) i=X,Y,Z λ 4 σ abs i (λ)exp(hc/(kTλ))dλ .

Metrics