Abstract

We report on a direct diode-pumped Ti:sapphire ultrafast regenerative amplifier laser system producing multi-μJ energies with a repetition rate from 50 to 250 kHz. By combining cryogenic cooling of Ti:sapphire with high brightness fiber-coupled 450nm laser diodes, we for the first time demonstrate a power-scalable CW-pumped architecture that can be directly applied to demanding ultrafast applications such as coherent high-harmonic EUV generation without any complex post-amplification pulse compression. Initial results promise a new era for Ti:sapphire amplifiers not only for ultrafast laser applications, but also for tunable CW sources. We discuss the unique challenges to implementation, as well as the solutions to these challenges.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system

Xiaoshi Zhang, Eric Schneider, Greg Taft, Henry Kapteyn, Margaret Murnane, and Sterling Backus
Opt. Express 20(7) 7015-7021 (2012)

Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer
Opt. Express 23(23) 30043-30048 (2015)

Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser

Charles G. Durfee, Tristan Storz, Jonathan Garlick, Steven Hill, Jeff A. Squier, Matthew Kirchner, Greg Taft, Kevin Shea, Henry Kapteyn, Margaret Murnane, and Sterling Backus
Opt. Express 20(13) 13677-13683 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, E. Schneider, G. Taft, H. Kaptyen, M. Murnane, and S. Backus, “Multi-microjoule, MHz repetition rate Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 20(7), 7015–7021 (2012).
    [Crossref] [PubMed]
  2. S. Backus, in ASSP 2008 Proceedings (Japan, 2008).
  3. T. B. Norris, “Femtosecond pulse amplification at 250 kHz with a Ti:sapphire regenerative amplifier and application to continuum generation,” Opt. Lett. 17(14), 1009–1011 (1992).
    [Crossref] [PubMed]
  4. T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
    [Crossref]
  5. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
    [Crossref] [PubMed]
  6. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [Crossref] [PubMed]
  7. S. Backus, J. Peatross, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, “Ti:sapphire amplifier producing millijoule-level, 21-fs pulses at 1 kHz,” Opt. Lett. 20(19), 2000–2002 (1995).
    [Crossref] [PubMed]
  8. J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).
  9. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
    [Crossref]
  10. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref] [PubMed]
  11. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, Modelocking of a Diode-Laser-Pumped Ti:Sapphire Laser (IEEE, 2010).
  12. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  13. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref] [PubMed]
  14. A. Rohrbacher, V. Markovic, W. Pallmann, and B. Resan, in Solid State Lasers XXV: Technology and Devices, W. A. Clarkson and R. K. Shori, eds. (SPIE-Int Soc Optical Engineering, 2016), Vol. 9726.
  15. A. Müller, O. B. Jensen, A. Unterhuber, T. Le, A. Stingl, K. H. Hasler, B. Sumpf, G. Erbert, P. E. Andersen, and P. M. Petersen, “Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses,” Opt. Express 19(13), 12156–12163 (2011).
    [Crossref] [PubMed]
  16. S. Backus, C. G. Durfee Iii, G. Mourou, H. C. Kapteyn, and M. M. Murnane, “0.2-TW laser system at 1kHz,” Opt. Lett. 22(16), 1256–1258 (1997).
    [Crossref] [PubMed]
  17. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  18. I. L. B. G. V. Erbert, R. P. Hackel, and S. L. Jenkins, presented at the CLEO, 1991 (unpublished).
  19. G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
    [Crossref]
  20. S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt. 51(1), 15–20 (2012).
    [Crossref] [PubMed]
  21. J. Dörring, A. Killi, U. Morgner, A. Lang, M. Lederer, and D. Kopf, “Period doubling and deterministic chaos in continuously pumped regenerative amplifiers,” Opt. Express 12(8), 1759–1768 (2004).
    [Crossref] [PubMed]
  22. C. E. Byvik and A. M. Buoncristiani, “Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra,” IEEE J. Quantum Electron. 21(10), 1619–1624 (1985).
    [Crossref]
  23. C. Ebert, T. Guiney, D. Irwin, and S. Patterson, in Laser Technology for Defense and Security XII, M. Dubinskii and S. G. Post, eds. (SPIE, 2016), Vol. 9834.
  24. P. Moulton, Proceedings of the IEEE “Tunable Solid State Lasers,” 80 (3), 348 (1992).
  25. C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
    [Crossref]

2015 (1)

2013 (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (1)

2010 (1)

2009 (2)

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref] [PubMed]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

2007 (1)

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

2004 (1)

1997 (2)

S. Backus, C. G. Durfee Iii, G. Mourou, H. C. Kapteyn, and M. M. Murnane, “0.2-TW laser system at 1kHz,” Opt. Lett. 22(16), 1256–1258 (1997).
[Crossref] [PubMed]

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

1995 (1)

1992 (1)

1986 (1)

1985 (1)

C. E. Byvik and A. M. Buoncristiani, “Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra,” IEEE J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

Andersen, P. E.

Andersen, T. V.

Backus, S.

Buoncristiani, A. M.

C. E. Byvik and A. M. Buoncristiani, “Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra,” IEEE J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

Burns, D.

Byvik, C. E.

C. E. Byvik and A. M. Buoncristiani, “Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra,” IEEE J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Devi, K.

S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt. 51(1), 15–20 (2012).
[Crossref] [PubMed]

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Dörring, J.

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Durfee, C. G.

Durfee Iii, C. G.

Ebrahim-Zadeh, M.

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt. 51(1), 15–20 (2012).
[Crossref] [PubMed]

Eidam, T.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Erbert, G.

Gabler, T.

Garlick, J.

Giesen, A.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Gürel, K.

Hadrich, S.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Hakobyan, S.

Hanf, S.

Hasler, K. H.

Hill, S.

Hoffmann, M.

Hönninger, C.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Huang, C. P.

Imahoko, T.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Jensen, O. B.

Johannsen, I.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Kamata, M.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Kapteyn, H.

Kapteyn, H. C.

Kaptyen, H.

Keller, U.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Kemp, A. J.

Killi, A.

Kirchner, M.

Kopf, D.

Kumar, S. C.

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt. 51(1), 15–20 (2012).
[Crossref] [PubMed]

Lang, A.

Le, T.

Lederer, M.

Limpert, J.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Maclean, A. J.

Misas, C. J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Morgner, U.

Moser, M.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Moulton, P. F.

Mourou, G.

Müller, A.

Murnane, M.

Murnane, M. M.

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Norris, T. B.

Obara, M.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Peatross, J.

Petersen, P. M.

Resan, B.

Rohrbacher, A.

Roser, F.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Roth, P. W.

Rothhardt, J.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Sakuma, J.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Samanta, G. K.

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

S. C. Kumar, G. K. Samanta, K. Devi, S. Sanguinetti, and M. Ebrahim-Zadeh, “Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser,” Appl. Opt. 51(1), 15–20 (2012).
[Crossref] [PubMed]

Sanguinetti, S.

Saraceno, C. J.

Schilt, S.

Schimpf, D. N.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Schneider, E.

Schreiber, T.

Seise, E.

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[Crossref] [PubMed]

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Sekita, H.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Shea, K.

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Squier, J. A.

Stingl, A.

Storz, T.

Südmeyer, T.

Sumiyoshi, T.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Sumpf, B.

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

Taft, G.

Takasago, K.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Tunnermann, A.

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

Tünnermann, A.

Unterhuber, A.

Weingarten, K.

Wirth, C.

Wittwer, V. J.

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Zhang, G.

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

Zhang, X.

Appl. Opt. (1)

Appl. Phys. B (2)

C. Hönninger, I. Johannsen, M. Moser, G. Zhang, A. Giesen, and U. Keller, “Diode-pumped thin-disk Yb:YAG regenerative amplifier,” Appl. Phys. B 65(3), 423–426 (1997).
[Crossref]

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb: YAG thin disk pulsed green laser for high power Ti: sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89(2–3), 217–222 (2007).
[Crossref]

Appl. Phys. Lett. (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of High-Energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793–2795 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

C. E. Byvik and A. M. Buoncristiani, “Analysis of vibronic transitions in titanium doped sapphire using the temperature of the fluorescence spectra,” IEEE J. Quantum Electron. 21(10), 1619–1624 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

J. Limpert, F. Roser, D. N. Schimpf, E. Seise, T. Eidam, S. Hadrich, J. Rothhardt, C. J. Misas, and A. Tunnermann, “High Repetition Rate Gigawatt Peak Power Fiber Laser-Systems,” IEEE J. Sel. Top. Quantum Electron 15(1), 159–169 (2009).

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lasers Eng. (1)

G. K. Samanta, S. C. Kumar, K. Devi, and M. Ebrahim-Zadeh, “High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm,” Opt. Lasers Eng. 50(2), 215–219 (2012).
[Crossref]

Opt. Lett. (5)

Other (6)

I. L. B. G. V. Erbert, R. P. Hackel, and S. L. Jenkins, presented at the CLEO, 1991 (unpublished).

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, Modelocking of a Diode-Laser-Pumped Ti:Sapphire Laser (IEEE, 2010).

A. Rohrbacher, V. Markovic, W. Pallmann, and B. Resan, in Solid State Lasers XXV: Technology and Devices, W. A. Clarkson and R. K. Shori, eds. (SPIE-Int Soc Optical Engineering, 2016), Vol. 9726.

S. Backus, in ASSP 2008 Proceedings (Japan, 2008).

C. Ebert, T. Guiney, D. Irwin, and S. Patterson, in Laser Technology for Defense and Security XII, M. Dubinskii and S. G. Post, eds. (SPIE, 2016), Vol. 9834.

P. Moulton, Proceedings of the IEEE “Tunable Solid State Lasers,” 80 (3), 348 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fully diode-pumped ultrafast Ti:sapphire oscillator amplifier system. The Kerr-lens-modelocked Ti:sapphire oscillator is pumped with 520nm diodes (1.7W), while the amplifier is pumped by high-power fiber-coupled 450 nm diodes (up to 100W) and is cryogenically cooled.

Fig. 2
Fig. 2

(blue) input spectrum from direct diode pumped oscillator. (red) Output spectrum from regenerative amplifier system.

Fig. 3
Fig. 3

(a) Regenerative amplifier setup for demonstration of direct diode-pumped Ti:sapphire amplifier system. (b) Double focus CW cavity for high power 100W tests.

Fig. 4
Fig. 4

CW operation of the Ti:sapphire cavity pumped by fiber-coupled 450 nm modules. (a) Laser slope efficiency plot for the cavity of Fig. 3(a), sans PC and polarizers and using a single 50W pump module. Threshold is at 21W of pump, and slope efficiency is 24%. (b) Slope efficiency curve for a CW configuration using 2x 50W pump modules Fig. 3(b). In this case, the two pump modules are focused from opposite sides of the crystal into two separate spots, and the laser cavity passes through both spots. This configuration shows a similar threshold, but allows for operation considerably farther above threshold. The maximum output power of 11W exceeds that of any other published work on CW Ti:sapphire, due to the use of very high CW pump power.

Fig. 5
Fig. 5

Demonstration of direct diode-pumped ultrafast Ti:sapphire laser-amplifier. Graph shows power vs repetition-rate for a preliminary cavity optimization, pumped by 45W. Inset (upper left) shows regenerative amplifier cavity buildup, and inset (lower right) shows beam image.

Fig. 6
Fig. 6

Marked quenching of fluorescence from Ti:sapphire pumped with with high-power 450 nm diodes. Left: 50W input power, Ti:sapphire crystal at 295 K. Note that the cryocell window is dark. Right: same, but crystal at 93 K. Note that this behavior is not as marked with 532 nm pumping, suggesting new gain dynamics in the system.

Fig. 7
Fig. 7

(a) Integrated fluorescence yield vs temperature for conventional Ti:sapphire pumping and (green) pumping with 450nm diodes (blue), showing an advantage using 450nm diodes at cryogenic temperatures below 188K. Integrated spectral power as a function of temperature showing a distinct difference in output fluorescence between the two pump wavelengths. The 450nm pump is un-polarized, where the 532nm pump is polarized along the c-axis. (b) Raw data showing spectral fluorescence content for select temperatures pumping with 450nm laser. (c) Raw data showing spectral fluorescence content for select temperatures pumping with 532nm laser.

Metrics