Abstract

Analog links in a 5-km few mode fiber (FMF) are experimentally investigated by exploiting fundamental and high-order linearly polarized (LP) and OAM modes (LP01, LP11a, LP11b, OAM+1, OAM-1). We use spurious free dynamic range (SFDR) of the second-order harmonic distortion (SHD) to evaluate the analog transmission performance. The dependence of analog link performance on the mode relative loss (MRL) between the fundamental and high-order LP and OAM modes is studied. The obtained results indicate that the analog signal transmission performance through a 5-km FMF is affected by MRL of different modes. High-order LP and OAM modes with relatively large MRL suffer degradation of analog link performance. In addition, we further assess the impacts of different modes themselves on the analog link performance. The obtained results imply that all the modes (LP01, LP11a, LP11b, OAM+1 and OAM-1) show similar analog link performance after transmitting through a 5-km FMF.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber

Long Zhu, Jun Liu, Qi Mo, Cheng Du, and Jian Wang
Opt. Express 24(15) 16934-16944 (2016)

Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber

Andong Wang, Long Zhu, Shi Chen, Cheng Du, Qi Mo, and Jian Wang
Opt. Express 24(11) 11716-11726 (2016)

Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system

Jun Liu, Shimao Li, Jing Du, Charalambos Klitis, Cheng Du, Qi Mo, Marc Sorel, Siyuan Yu, Xinlun Cai, and Jian Wang
Opt. Lett. 41(9) 1969-1972 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]
  3. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [Crossref]
  5. V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-Haul Analog Photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
    [Crossref]
  6. H. Kosek, Y. He, X. Gu, and X. N. Fernando, “All-optical demultiplexing of WLAN and cellular CDMA radio signals,” J. Lightwave Technol. 25(6), 1401–1409 (2007).
    [Crossref]
  7. A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
    [Crossref]
  8. A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
    [Crossref]
  9. A. J. Cooper, “Fiber/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
    [Crossref]
  10. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
    [Crossref]
  11. I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Tech. 43(9), 2378–2386 (1995).
    [Crossref]
  12. J. Du and J. Wang, “Experimental performance evaluation of analog signal transmission in a silicon microring resonator,” Opt. Lett. 40(7), 1181–1184 (2015).
    [Crossref] [PubMed]
  13. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express 20(12), 13115–13122 (2012).
    [Crossref] [PubMed]
  14. M. Streshinsky, A. Ayazi, Z. Xuan, A. E. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Highly linear silicon traveling wave Mach-Zehnder carrier depletion modulator based on differential drive,” Opt. Express 21(3), 3818–3825 (2013).
    [Crossref] [PubMed]
  15. V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
    [Crossref]
  16. E. I. Ackerman and C. H. Cox, “RF fiber-optic link performance,” IEEE Microw. Mag. 2(4), 50–58 (2001).
    [Crossref]
  17. Y. Cui, Y. Dai, F. Yin, J. Dai, K. Xu, J. Li, and J. Lin, “Intermodulation distortion suppression for intensity-modulated analog fiber-optic link incorporating optical carrier band processing,” Opt. Express 21(20), 23433–23440 (2013).
    [Crossref] [PubMed]
  18. D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  19. A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
    [Crossref]
  20. P. Li, L. Yan, T. Zhou, W. Li, Z. Chen, W. Pan, and B. Luo, “Improvement of linearity in phase-modulated analog photonic link,” Opt. Lett. 38(14), 2391–2393 (2013).
    [Crossref] [PubMed]
  21. C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
    [Crossref]
  22. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  23. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  24. E. Ip, M. Li, K. Bennett, Y. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, and Y. Yano, “146 λ × 6 × 19-Gbaud wavelength-and mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” J. Lightwave Technol. 32(4), 790–797 (2014).
    [Crossref]
  25. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  26. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  27. J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
    [Crossref]
  28. S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
    [Crossref] [PubMed]
  29. C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University, 2004).
  30. W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).
  31. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
    [Crossref]
  32. S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
    [PubMed]
  33. P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-Mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
    [Crossref]
  34. J. Chen, N. Bamiedakis, P. Vasil’ev, T. Edwards, C. Brown, R. Penty, and I. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2015).
    [Crossref]

2016 (2)

2015 (3)

2014 (2)

2013 (5)

2012 (3)

2011 (1)

2010 (2)

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

2009 (2)

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2007 (2)

2006 (3)

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

2004 (1)

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

2002 (1)

J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

2001 (1)

E. I. Ackerman and C. H. Cox, “RF fiber-optic link performance,” IEEE Microw. Mag. 2(4), 50–58 (2001).
[Crossref]

1995 (2)

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Tech. 43(9), 2378–2386 (1995).
[Crossref]

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

1991 (1)

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

1990 (1)

A. J. Cooper, “Fiber/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[Crossref]

Achten, F.

Ackerman, E.

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Ackerman, E. I.

E. I. Ackerman and C. H. Cox, “RF fiber-optic link performance,” IEEE Microw. Mag. 2(4), 50–58 (2001).
[Crossref]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Alic, N.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Amezcua-Correa, R.

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Ayazi, A.

Baehr-Jones, T.

Bamiedakis, N.

Barry, L. P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Batchelor, J. C.

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Bennett, K.

Bernstein, N.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Betts, G. E.

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Bigot-Astruc, M.

Bolle, C.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brès, C. S.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Brown, C.

Bucholtz, F.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-Haul Analog Photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

Burrows, E. C.

Campillo, A. L.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, J.

Chen, Z.

Cooper, A. J.

A. J. Cooper, “Fiber/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[Crossref]

Cox, C. H.

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

E. I. Ackerman and C. H. Cox, “RF fiber-optic link performance,” IEEE Microw. Mag. 2(4), 50–58 (2001).
[Crossref]

Cui, Y.

Dai, J.

Dai, Y.

Das, A.

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

De Jongh, K.

Devgan, P. S.

Dexter, J. L.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Du, J.

Edwards, T.

Esmaeelpour, M.

Essiambre, R.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Fernando, X. N.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Frigyes, I.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Tech. 43(9), 2378–2386 (1995).
[Crossref]

Gamage, P.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

Garcia, I. J.

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Gnauck, A. H.

Gomes, N. J.

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Gu, X.

He, Y.

Hochberg, M.

Hu, J.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, Y.

Ip, E.

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

Koreshkov, K.

Korolev, A.

Kosek, H.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Kuo, B. P. P.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Lee, J. J.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Lethien, C.

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Li, J.

Li, M.

Li, P.

Li, S.

S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
[Crossref] [PubMed]

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

Li, W.

Lim, A. E.

Lim, C.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

Lin, J.

Lingle, R.

Liu, Y.

Lo, G. Q.

Luo, B.

Mateo, E.

McCurdy, A. H.

McKinney, J. D.

Molin, D.

Mumtaz, S.

Myslivets, E.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Newberg, I. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Ng, W.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Nirmalathas, A.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

Nkansah, A.

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Novak, D.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Okonkwo, C. M.

Pan, W.

Peckham, D. W.

Penty, R.

Prince, J. L.

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Radic, S.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Randel, S.

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Rogge, M. S.

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

Ryf, R.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

Seeds, A. J.

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Tech. 43(9), 2378–2386 (1995).
[Crossref]

Seeds, J.

J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

Sierra, A.

Sillard, P.

Stossel, B.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Streshinsky, M.

Tanaka, A.

Tangonan, G. L.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Urick, V. J.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-Haul Analog Photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

Vasil’ev, P.

Velazquez-Benitez, A. M.

Vilcot, J.-P.

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Wake, D.

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

Walston, A. A.

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

Wang, J.

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
[Crossref] [PubMed]

J. Du and J. Wang, “Experimental performance evaluation of analog signal transmission in a silicon microring resonator,” Opt. Lett. 40(7), 1181–1184 (2015).
[Crossref] [PubMed]

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Waterhouse, R.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

White, I.

Wiberg, A. O. J.

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

Williams, K. J.

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-Haul Analog Photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Winzer, P. J.

Wood, W.

Xu, K.

Xuan, Z.

Yan, L.

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, Y.

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

Yano, Y.

Yao, J.

Yin, F.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhou, T.

Electron. Lett. (1)

A. J. Cooper, “Fiber/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26(24), 2054–2056 (1990).
[Crossref]

IEEE Microw. Mag. (2)

E. I. Ackerman and C. H. Cox, “RF fiber-optic link performance,” IEEE Microw. Mag. 2(4), 50–58 (2001).
[Crossref]

A. Nirmalathas, P. Gamage, C. Lim, D. Novak, R. Waterhouse, and Y. Yang, “Digitized RF transmission over fiber,” IEEE Microw. Mag. 10(4), 75–81 (2009).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

A. Nkansah, A. Das, C. Lethien, J.-P. Vilcot, N. J. Gomes, I. J. Garcia, J. C. Batchelor, and D. Wake, “Simultaneous dual band transmission over multimode fiber-fed indoor wireless network,” IEEE Microw. Wirel. Compon. Lett. 16(11), 627–629 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multifunctional operation of a fiber Bragg grating in a WDM/SCM radio over fiber distribution system,” IEEE Photonics Technol. Lett. 16(2), 605–607 (2004).
[Crossref]

C. S. Brès, A. O. J. Wiberg, B. P. P. Kuo, E. Myslivets, N. Alic, B. Stossel, and S. Radic, “Low distortion multicasting of an analog signal by self-seeded parametric mixer,” IEEE Photonics Technol. Lett. 22(5), 332–334 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech. 43(9), 2184–2197 (1995).
[Crossref]

C. H. Cox, E. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

J. Seeds, “Microwave Photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[Crossref]

V. J. Urick, M. S. Rogge, F. Bucholtz, and K. J. Williams, “The performance of analog photonic links employing highly compressed erbium-doped fiber amplifiers,” IEEE Trans. Microw. Theory Tech. 54(7), 3141–3145 (2006).
[Crossref]

I. Frigyes and A. J. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Trans. Microw. Theory Tech. 43(9), 2378–2386 (1995).
[Crossref]

J. Lightwave Technol. (9)

V. J. Urick, F. Bucholtz, J. D. McKinney, P. S. Devgan, A. L. Campillo, J. L. Dexter, and K. J. Williams, “Long-Haul Analog Photonics,” J. Lightwave Technol. 29(8), 1182–1205 (2011).
[Crossref]

H. Kosek, Y. He, X. Gu, and X. N. Fernando, “All-optical demultiplexing of WLAN and cellular CDMA radio signals,” J. Lightwave Technol. 25(6), 1401–1409 (2007).
[Crossref]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol. 9(9), 1124–1131 (1991).
[Crossref]

P. Sillard, D. Molin, M. Bigot-Astruc, K. De Jongh, F. Achten, A. M. Velazquez-Benitez, R. Amezcua-Correa, and C. M. Okonkwo, “Low-differential-mode-group-delay 9-LP-Mode fiber,” J. Lightwave Technol. 34(2), 425–430 (2016).
[Crossref]

J. Chen, N. Bamiedakis, P. Vasil’ev, T. Edwards, C. Brown, R. Penty, and I. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” J. Lightwave Technol. 34(12), 2934–2940 (2015).
[Crossref]

D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6x6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
[Crossref]

E. Ip, M. Li, K. Bennett, Y. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, and Y. Yano, “146 λ × 6 × 19-Gbaud wavelength-and mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” J. Lightwave Technol. 32(4), 790–797 (2014).
[Crossref]

Nat. Photonics (3)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Photonics Res. (1)

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

Sci. Rep. (1)

S. Li and J. Wang, “A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes),” Sci. Rep. 4, 3853 (2014).
[PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (2)

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University, 2004).

W. S. C. Chang, RF Photonic Technology in Optical Fiber Links (Cambridge University, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Concept of analog link system using an FMF.
Fig. 2
Fig. 2 (a) Experimental setup for analog signal transmission in FMF (OAMF). ECL: external cavity laser, PC: polarization controller, MZM: Mach-Zehnder modulator, PD: photo-detector, ESA: electric spectrum analyzer, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator. Col.: collimator; NDF: neutral density filter; Pol.: polarizer; HWP: half-wave plate; SLM: spatial light modulator; L: lens; BS: beam splitter; OL: objective lens. Insert is the image of FMF compared with SMF. (b) Cross-section view of the FMF. (c) Supported six eigenmodes in two mode groups of the FMF. neff: effective modal index; Dλ: chromatic dispersion coefficient; DMD: differential mode delay between HE11 and other higher-order modes, respectively.
Fig. 3
Fig. 3 (a) Simulated LP and OAM modes supported in FMF at the wavelength of 1550 nm. (b) Experimentally measured intensity profiles of LP and OAM modes before and after modulation by SLM.
Fig. 4
Fig. 4 (a)-(d) Measured RF spectra by ESA for back-to-back (B-to-B), LP01, LP11a(b) and OAM ± 1, respectively. The RF input power is 7 dBm. The optical power before coupling into FMF is about 1.5 dBm.
Fig. 5
Fig. 5 Measured output power of RF carrier and distortion versus RF input power for (a) LP01, (b) LP11a(b) and (c) OAM ± 1,modes, respectively. (d) Measured SHD SFDR and mode relative loss (MRL) versus different modes (LP01, LP11a, LP11b, OAM+1 and OAM-1).
Fig. 6
Fig. 6 Measured output power of RF carrier and distortion versus RF input power under the same MRL for (a) LP01, (b) LP11a(b) and (c) OAM ± 1,modes, respectively. (d) Measured SHD SFDR versus different modes (LP01, LP11a, LP11b, OAM+1 and OAM-1) under the same MRL.

Metrics