Abstract

In this paper, three Fano resonances based on three different physical mechanisms are theoretically and numerically investigated in a plasmonic resonator system, comprised of two circular cavities. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed to explain the Fano resonances in plasmonic resonator system. According to MICMT, one of the Fano resonances originates from the interference between different resonant modes of one resonator, the other is induced by the interference between the resonant modes of different resonators. Mode degeneracy is removed when the symmetry of the system is broken, thereby emerging the third kind of Fano resonance which is called degenerate interference Fano resonance, and the degenerate interference coupled mode theory (DICMT) is proposed to explain this kind of Fano resonance. The sensitivity and FOM* (figure of merit) of these Fano resonances can be as high as 840 nm/RIU and 100, respectively. These are useful for fundamental study and applications in sensors, splitters and slow-light devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system

Shilei Li, Yunyun Zhang, Xiaokang Song, Yilin Wang, and Li Yu
Opt. Express 24(14) 15351-15361 (2016)

Refractive index sensor based on multiple Fano resonances in a plasmonic MIM structure

Zhengfeng Li, Kunhua Wen, Li Chen, Liang Lei, Jinyun Zhou, Dongyue Zhou, Yihong Fang, and Bingye Wu
Appl. Opt. 58(18) 4878-4883 (2019)

Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system

Xiaobin Ren, Kun Ren, and Yuanxue Cai
Appl. Opt. 56(31) H1-H9 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
    [Crossref] [PubMed]
  3. E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
    [Crossref] [PubMed]
  4. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  5. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
    [Crossref] [PubMed]
  6. J. Shu, W. Gao, K. Reichel, D. Nickel, J. Dominguez, I. Brener, D. M. Mittleman, and Q. Xu, “High-Q terahertz Fano resonance with extraordinary transmission in concentric ring apertures,” Opt. Express 22(4), 3747–3753 (2014).
    [Crossref] [PubMed]
  7. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
    [Crossref] [PubMed]
  8. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
    [Crossref] [PubMed]
  9. Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
    [Crossref]
  10. S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
    [Crossref] [PubMed]
  11. T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
    [Crossref] [PubMed]
  12. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008).
    [Crossref] [PubMed]
  13. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  14. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  15. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  16. G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
    [Crossref] [PubMed]
  17. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  18. J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
    [Crossref] [PubMed]
  19. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).
  20. J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
    [Crossref] [PubMed]
  21. J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
    [Crossref]
  22. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
    [Crossref] [PubMed]
  23. Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).
  24. Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
    [Crossref]
  25. Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
    [Crossref]

2016 (3)

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
[Crossref] [PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

2015 (3)

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

2014 (5)

2013 (2)

J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21(2), 2236–2244 (2013).
[Crossref] [PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

2012 (1)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

2011 (2)

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

2010 (3)

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Alivisatos, A. P.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Arju, N.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Becker, J.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Bian, Z.

Biris, C. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Brener, I.

Chen, J.

Chen, J. J.

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Chen, Y.

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Chen, Z.

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, “Independently tunable double Fano resonances in asymmetric MIM waveguide structure,” Opt. Express 22(12), 14688–14695 (2014).
[Crossref] [PubMed]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, P.

Dominguez, J.

Duan, G.

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Fan, C.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gao, W.

Giessen, H.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gong, Q.

J. Chen, C. Sun, and Q. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014).
[Crossref] [PubMed]

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

He, J.

Hentschel, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Hohenester, U.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Huang, X. G.

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jahromi, R. R. F.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Jakab, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Khanikaev, A.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Lai, G.

Langbein, W.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Li, S.

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
[Crossref] [PubMed]

Li, Y.

Li, Z.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Liang, E.

Liang, R.

Lin, X. S.

Liu, N.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, T.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Mesch, M.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

Mittleman, D. M.

Muljarov, E. A.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

Nickel, D.

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Osley, E. J.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Panoiu, N. C.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Purtseladze, D.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

Qi, J.

Qiang, W.

Reichel, K.

Saliba, M.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Schäferling, M.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

Shu, J.

Shvets, G.

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Song, X.

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
[Crossref] [PubMed]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

Sönnichsen, C.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Sun, C.

Sun, Q.

Thompson, P. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Trügler, A.

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Vogelgesang, R.

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Wang, J.

Wang, L.

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

Wang, Y.

Warburton, P. A.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Weiss, T.

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Xiao, J.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Xiao, J. H.

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Xu, J.

Xu, Q.

Xue, Q.

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

Yi, L.

Yu, L.

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
[Crossref] [PubMed]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

Yue, S.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

Zhan, G.

Zhang, X.

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Zhang, Y.

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

S. Li, Y. Zhang, X. Song, Y. Wang, and L. Yu, “Tunable triple Fano resonances based on multimode interference in coupled plasmonic resonator system,” Opt. Express 24(14), 15351–15361 (2016).
[Crossref] [PubMed]

G. Lai, R. Liang, Y. Zhang, Z. Bian, L. Yi, G. Zhan, and R. Zhao, “Double plasmonic nanodisks design for electromagnetically induced transparency and slow light,” Opt. Express 23(5), 6554–6561 (2015).
[Crossref] [PubMed]

Zhao, R.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Zhen, R.

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

IEEE Photonics J. (2)

Z. Chen and L. Yu, “Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system,” IEEE Photonics J. 6(6), 1–8 (2014).

Z. Chen, X. Song, R. Zhen, G. Duan, L. Wang, and L. Yu, “Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting,” IEEE Photonics J. 7(6), 1–8 (2014).
[Crossref]

Nano Lett. (3)

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012).
[Crossref] [PubMed]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11(4), 1685–1689 (2011).
[Crossref] [PubMed]

M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10(7), 2721–2726 (2010).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Zhang, S. Li, X. Zhang, Y. Chen, L. Wang, Y. Zhang, and L. Yu, “Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor,” Opt. Commun. 370, 203–208 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (6)

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

N. Arju, T. Ma, A. Khanikaev, D. Purtseladze, and G. Shvets, “Optical realization of double-continuum Fano interference and coherent control in plasmonic metasurfaces,” Phys. Rev. Lett. 114(23), 237403 (2015).
[Crossref] [PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. F. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

T. Weiss, M. Mesch, M. Schäferling, H. Giessen, W. Langbein, and E. A. Muljarov, “From dark to bright: first-order perturbation theory with analytical mode normalization for plasmonic nanoantenna arrays applied to refractive index sensing,” Phys. Rev. Lett. 116(23), 237401 (2016).
[Crossref] [PubMed]

Plasmonics (2)

J. Becker, A. Trügler, A. Jakab, U. Hohenester, and C. Sönnichsen, “The optimal aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics 5(2), 161–167 (2010).
[Crossref]

Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics 10(1), 131–137 (2015).
[Crossref]

Other (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the plasmonic resonator system composed of (a) two MIM waveguides and one circular cavity and (b) two MIM waveguides and two circular cavities. And the distribution of the normalized magnetic field (Hz) of the resonant modes (c) TM0,4 mode at 652 nm, (d) TM0,3 mode at 812 nm, (e) TM1,0 mode at 854 nm, (f) TM0,2 mode at 1094 nm in circular cavity A with RA = 500 nm, respectively.
Fig. 2
Fig. 2 The simulation results (blue lines) and MICMT results (red lines) of spectral transmittance of the plasmonic resonator system with RA = 500 nm and (a) ΔH = 0, (c) ΔH = 50 nm, (d) ΔH = 100 nm. The change of ΔH almost has no influence on the internal losses of the four resonant modes. By curve fitting, it can be obtained that the decay time of the internal losses respectively are about τ10 = 68fs, τ20 = 190fs, τ30 = 71fs, τ40 = 38fs. The decay time of coupling and the total coupling phases respectively are about: (a) τ1 = 31fs, τ2 = 150fs, τ3 = 31fs, τ4 = 36fs, φ1 = 0, φ2 = 0.3π, φ3 = −0.7π, φ4 = 0; (c) τ1 = 31fs, τ2 = 160fs, τ3 = 71fs, τ4 = 176fs, φ1 = −0.45π, φ2 = 0.85π, φ3 = −0.46π, φ4 = 0.8π; (d) τ1 = 31fs, τ2 = 170fs, τ3 = 180fs, τ4 = 36fs, φ1 = 0, φ2 = −0.2π, φ3 = 0.24π, φ4 = 0; (b) Argand diagram of the transmission coefficient tn of the four resonant modes at peak (red lines) and trough (blue lines) of FR1 in the plasmonic system shown in Fig. 1(a) with RA = 500 nm and ΔH = 0.
Fig. 3
Fig. 3 The simulation results (blue lines) and DICMT results (red lines) of spectral transmittance of the plasmonic resonator system with RA = 500 nm and (a) ΔH = 50 nm, (b) ΔH = 100 nm. The parameters of degenerate coupling respectively are about φ 1d =0.32π , ω 1d =1.69× 10 15 rad/s , τ 1d =203fs and δ 1 =0.1 . The coupling parameters of TM0,1 mode respectively are about τ 60 =69fs and (a) τ 6 =58fs , φ 6 =1.1π ; (b) τ 6 =48fs , φ 6 =0.66π . (c-g) The simulation results of spectral transmittance of the plasmonic resonator system with different ΔH.
Fig. 4
Fig. 4 The distribution of the normalized magnetic field (Hz) of the resonant modes at (a) 812 nm, (b) 854 nm and (c) 1001 nm in the plasmonic resonator system with ΔH = 0, RA = 500 nm, RB = 250 nm, g = 10 nm, respectively. (d) The simulation result (blue line) and MICMT result (red line) of the transmission response of the plasmonic resonator system.
Fig. 5
Fig. 5 The dependence of transmission response on the structure parameters, when ΔH = 0, g = 10 nm. (a-e) Different RA = 480 nm ~520 nm with fixed RB = 250 nm; (f-j) Different RB = 240 nm ~260 nm with fixed RA = 500 nm.
Fig. 6
Fig. 6 (a) The transmission spectra of the plasmonic resonator system with RA = 500 nm, RB = 250 nm, g = 10 nm, ΔH = 0, and different refractive indices of the dielectric in the waveguides and cavities, n = 1.00 (blue line), n = 1.02 (red line). (b) The FOM curve of this plasmonic resonator system.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d a n dt =( j ω n 1 τ n0 1 τ n1 1 τ n2 ) a n + κ n1 s n,1+ + κ n2 s n,2+
s 1 = s 1+ + n κ n1 * a n , κ n1 = 2 τ n1 e j θ n1
s 2 = s 2+ + n κ n2 * a n , κ n2 = 2 τ n2 e j( θ n2 ϕ n )
s n,1+ = γ n1 e j φ n1 s 1+ , s n,2+ = γ n2 e j φ n2 s 2+
t= s 2 s 1+ = n γ n1 | κ n1 || κ n2 | e j φ n j( ω ω n )+ 1 τ n0 + 1 τ n1 + 1 τ n2 , φ n = φ n1 + ϕ n + θ n1 θ n2
T= | t | 2 = | n=1 4 2 γ n1 e j φ n j( ω ω n ) τ n +2+ τ n τ n0 | 2 , φ n = φ n1 + ϕ n
d a n l dt =( j ω n 1 τ n0 1 τ n1 1 τ n2 ) a n l + κ n1 l s n,1+ A n1 l + κ n2 l s n,2+ A n2 l ,l=,
s 1 = s 1+ + n ( κ n1 * a n + κ n1 * a n )
s 2 = s 2+ + n ( κ n2 * a n + κ n2 * a n )
A n1 + A n1 =1, A n2 + A n2 =1
T= | t | 2 = | n 2 γ n1 e j φ n ( e j ϕ n A n1 + e j ϕ n A n1 ) j( ω ω n ) τ n +2+ τ n τ n0 | 2 , ϕ n =2marccos( ΔH R A )

Metrics