Abstract

In this paper, we propose and demonstrate a millimeter-resolution long-range optical frequency domain reflectometry (OFDR) using an ultra-linearly 100-GHz swept optical source realized by injection-locking technique and cascaded four-wave-mixing (FWM) process. The ultra-linear sweep is realized using an external modulation method with a linearly swept radio frequency (RF) signal. The RF signal sweeps from 16 GHz to 19.3 GHz, and the slave laser is injection-locked to the 8th-order sideband of the master laser, achieving a frequency sweeping span of ~25 GHz. By using the injection-locked frequency-swept laser as the optical source of OFDR, we obtain a spatial resolution of 4.2 mm over 10-km measurement range. A polarization beat length of 10.5 cm is measured benefiting from the high spatial resolution. To improve the spatial resolution further, FWM process is used to broaden the frequency sweeping span. Frequency sweeping span of ~100 GHz is achieved with cascaded FWM. We demonstrate a 1.1-mm spatial resolution over 2-km measurement range with the proposed ultra-linearly swept optical source.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Centimeter-level spatial resolution over 40 km realized by bandwidth-division phase-noise-compensated OFDR

Xinyu Fan, Yusuke Koshikiya, and Fumihiko Ito
Opt. Express 19(20) 19122-19128 (2011)

Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range

Qingwen Liu, Xinyu Fan, and Zuyuan He
Opt. Express 23(20) 25988-25995 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
    [Crossref]
  2. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20(12), 13138–13145 (2012).
    [Crossref] [PubMed]
  3. Z. Ding, X. S. Yao, T. Liu, Y. Du, K. Liu, Q. Han, Z. Meng, and H. Chen, “Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals,” Opt. Express 20(27), 28319–28329 (2012).
    [Crossref] [PubMed]
  4. D. Arbel and A. Eyal, “Dynamic optical frequency domain reflectometry,” Opt. Express 22(8), 8823–8830 (2014).
    [Crossref] [PubMed]
  5. H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
    [Crossref]
  6. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  7. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol. 26(18), 3287–3294 (2008).
    [Crossref]
  8. D. Xu, J. Du, X. Fan, Q. Liu, and Z. He, “10-times broadened fast optical frequency sweeping for high spatial resolution OFDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3D.2 (2014).
    [Crossref]
  9. J. Wang, D. Chen, H. Cai, F. Wei, and R. Qu, “Fast optical frequency sweeping using voltage controlled oscillator driven single sideband modulation combined with injection locking,” Opt. Express 23(6), 7038–7043 (2015).
    [Crossref] [PubMed]
  10. F. Wei, B. Lu, J. Wang, D. Xu, Z. Pan, D. Chen, H. Cai, and R. Qu, “Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking,” Opt. Express 23(4), 4970–4980 (2015).
    [Crossref] [PubMed]
  11. X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
    [Crossref]
  12. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol. 30(8), 1015–1024 (2012).
    [Crossref]
  13. M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
    [Crossref]
  14. D. Xu, J. Du, X. Fan, and Z. He, “High spatial resolution OFDR based on broadened optical frequency sweeping by four-wave-mixing,” in OFS2014 23rd International Conference on Optical Fiber Sensors (2014), paper 91576J.
  15. B. P.-P. Kuo and S. Radic, “Fast wideband source tuning by extra-cavity parametric process,” Opt. Express 18(19), 19930–19940 (2010).
    [Crossref] [PubMed]
  16. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5(6), 273–275 (1980).
    [Crossref] [PubMed]
  17. Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
    [Crossref]

2016 (1)

M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
[Crossref]

2015 (2)

2014 (1)

2012 (3)

2010 (2)

B. P.-P. Kuo and S. Radic, “Fast wideband source tuning by extra-cavity parametric process,” Opt. Express 18(19), 19930–19940 (2010).
[Crossref] [PubMed]

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

2009 (2)

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
[Crossref]

2008 (1)

2005 (1)

1989 (1)

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

1980 (1)

Arbel, D.

Badar, M.

M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
[Crossref]

Bao, X.

Barfuss, H.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Brinkmeyer, E.

H. Barfuss and E. Brinkmeyer, “Modified optical frequency domain reflectometry with high spatial resolution for components of integrated optic systems,” J. Lightwave Technol. 7(1), 3–10 (1989).
[Crossref]

Cai, H.

Chen, D.

Chen, H.

Chen, L.

Ding, Z.

Du, Y.

Eickhoff, W.

Eyal, A.

Fan, X.

Froggatt, M.

Gifford, D.

Han, Q.

He, Z.

Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
[Crossref]

Hotate, K.

Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
[Crossref]

Ito, F.

Iwashita, K.

M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
[Crossref]

Kobayashi, H.

M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
[Crossref]

Koshikiya, Y.

Kuo, B. P.-P.

Li, W.

Liu, K.

Liu, T.

Lu, B.

Mégret, P.

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

Meng, Z.

Mizuno, Y.

Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
[Crossref]

Moeyaert, V.

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

Pan, Z.

Qin, Z.

Qu, R.

Radic, S.

Rashleigh, S. C.

Soller, B.

Ulrich, R.

Wang, J.

Wei, F.

Wolfe, M.

Wuilpart, M.

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

Xu, D.

Yao, X. S.

Yüksel, K.

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

Zhou, D. P.

Appl. Phys. Express (1)

Y. Mizuno, Z. He, and K. Hotate, “Polarization beat length distribution measurement in single-mode optical fibers with Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express 2(4), 046502 (2009).
[Crossref]

IEEE J. Opt. Commun. Netw. (1)

K. Yüksel, M. Wuilpart, V. Moeyaert, and P. Mégret, “Novel monitoring technique for passive optical networks based on optical frequency domain reflectometry (OFDR) and fiber Bragg gratings,” IEEE J. Opt. Commun. Netw. 2(7), 463–468 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

X. Fan, Y. Koshikiya, and F. Ito, “Phase-noise-compensated optical frequency-domain reflectometry,” IEEE J. Quantum Electron. 45(6), 594–602 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Badar, H. Kobayashi, and K. Iwashita, “Spatial resolution improvement in OFDR using four wave mixing and DSB-SC modulation,” IEEE Photonics Technol. Lett. 28(15), 1680–1683 (2016).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (7)

Opt. Lett. (1)

Other (2)

D. Xu, J. Du, X. Fan, and Z. He, “High spatial resolution OFDR based on broadened optical frequency sweeping by four-wave-mixing,” in OFS2014 23rd International Conference on Optical Fiber Sensors (2014), paper 91576J.

D. Xu, J. Du, X. Fan, Q. Liu, and Z. He, “10-times broadened fast optical frequency sweeping for high spatial resolution OFDR,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W3D.2 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic illustration of the spectrum for the frequency sweep with high-order sidebands of external modulation.
Fig. 2
Fig. 2 The schematic illustration of the principle. (a) Broadening the frequency sweeping using first stage FWM; and (b) using second stage FWM.
Fig. 3
Fig. 3 Experimental setup of the injection-locking scheme. FL: fiber laser; IM: intensity modulator; VOA: variable optical attenuator; PC: polarization controller; DFB: distributed feedback diode laser; Amp: RF amplifier; AWG: arbitrary waveform generator; FUT: fiber under test; BPD: balanced photodetector; A/D: analog-to-digital converter.
Fig. 4
Fig. 4 (a) Optical spectrum of the slave laser which is injection locked to the 8th-order sideband of the master laser, and the inset is spectrum of the generated optical comb after IM; (b) Relative optical frequency as a function of time after the injection-locking.
Fig. 5
Fig. 5 (a). Measured reflection trace; (b) Details of reflection peak around 10 km after using PNC algorithm.
Fig. 6
Fig. 6 Intensity of Rayleigh backscattered signals when the fiber is (a) kept straight, (b) bent with a radius of 1.2 cm, and (c) bent with a radius of 0.65 cm; (d) The frequency spectra of Rayleigh signals when the bending radii are 4.2 cm, 1.7 cm, 1.2 cm, and 0.65 cm; (e) Measured polarization beat length versus the square of mandrel radii.
Fig. 7
Fig. 7 Experimental setup of the cascaded FWM scheme. FL: fiber laser; IM: intensity modulator; VOA: variable optical attenuator; PC: polarization controller; DFB: distributed feedback diode laser; Amp.: RF amplifier; AWG: arbitrary waveform generator; BPF: bandpass filter; HNLF: highly nonlinear fiber; FUT: fiber under test; BPD: balanced photodetector; A/D: analog-to-digital converter.
Fig. 8
Fig. 8 Measured optical spectra using (a) 1st-stage FWM, and (b) 2nd-stage FWM.
Fig. 9
Fig. 9 (a) Relative optical frequency changes as a function of time; (b) The frequency residual errors.
Fig. 10
Fig. 10 Measured reflection trace, and the inset shows the details of reflection peak at the end of the FUT.

Tables (1)

Tables Icon

Table 1 The parameters of the FUT used in the system.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δl= c 2nΔF
E(t)[ n= J n (β) e i2π( v 0 +n f m )t ] e iθ(t)
E K (t) e i[2π( v 0 +K f m )t+ϕ(t)]
E i =C A p 2 A s exp[j(2 ω p ω s )t+2( ϕ p ϕ s )]
Φ(t)=[θ(t)θ(t τ FUT )] τ FUT τ REF [θ(t)θ(t τ REF )]
L B =| 4λ R 2 n 3 p(1+v) r 2 |

Metrics