Abstract

We have proposed and experimentally demonstrated all-optical multiplexing (MUX)-format conversion from Nyquist optical time division multiplex (OTDM) to Nyquist wavelength division multiplex (WDM). The system is simply configured with a straight-type phase modulator (PM) driven by a sinusoidal wave and an optical Nyquist filter. In the theoretical investigation, it is proved that the single Nyquist signal is completely converted to Nyquist WDM signal, which consists of two half-baud-rate signals with different carrier frequencies. The theoretical modulation voltage for the phase modulator is slightly lower than Vπ: 0.913 Vπ, and it is experimentally verified. In the experimental demonstrations, 50 Gbaud to 25 Gbaud x 2 and 25 Gbaud to 12.5 Gbaud x 2 conversions are successfully demonstrated with quite low optical signal-to-noise ratio (OSNR) penalties. In addition, cascaded MUX-format conversion is also demonstrated; 50 Gbaud Nyquist signal is converted to four channels of 12.5 Gbaud Nyquist signals.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM signals for all-optical elastic network

Hung Nguyen Tan, Takashi Inoue, Takayuki Kurosu, and Shu Namiki
Opt. Express 21(17) 20313-20321 (2013)

Flexible OTDM to WDM converter enabled by a programmable optical processor

Miguel V. Drummond, António L.J. Teixeira, Paulo P. Monteiro, and Rogério N. Nogueira
Opt. Express 20(2) 1783-1789 (2012)

320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe
Opt. Express 22(1) 110-118 (2014)

References

  • View by:
  • |
  • |
  • |

  1. O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: A new dawn for the optical layer?,” IEEE Communications Magazine, S12–S20, February (2012).
  2. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Communications Magazine, 138–145, August (2010).
  3. M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, Y. Miyamoto, K. Yonenaga, A. Takada, O. Ishida, and S. Matsuoka, “Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s,” in Proceedings of European Conference on Optical Communication2008 (ECOC2008), Th.3.F.6.
    [Crossref]
  4. Y. Yin, K. Wen, D. J. Geisler, R. Liu, and S. J. B. Yoo, “Dynamic on-demand defragmentation in flexible bandwidth elastic optical networks,” Opt. Express 20(2), 1798–1804 (2012).
    [Crossref] [PubMed]
  5. N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in Proceedings of European Conference on Optical Communication2011 (ECOC2011), Th.13.K.1.
    [Crossref]
  6. K. Sone, X. Wang, S. Oda, G. Nakagawa, Y. Aoki, I. Kim, P. Palacharla, T. Hoshida, M. Sekiya, and J. C. Rasmussen, “First demonstration of hitless spectrum defragmentation using real-time coherent receivers in flexible grid optical networks,” European Conference on Optical Communication 2012 (ECOC2012), Th.3.D.1.
    [Crossref]
  7. H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical Nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in Proceedings of European Conference on Optical Communication2014 (ECOC2014), Tu.3.6.1.
    [Crossref]
  8. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  9. J. Yu, Z. Dong, H. Chien, Z. Jia, X. Li, D. Huo, M. Gunkel, P. Wagner, H. Mayer, and A. Schippel, “Transmission of 200 G PDM-CSRZ-QPSK and PDM-16 QAM with a SE of 4 b/s/Hz,” J. Lightwave Technol. 31(4), 515–522 (2013).
    [Crossref]
  10. S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of no-guard-interval 6 x 25 Gbit/s all-optical Nyquist WDM system for flexible optical networks by using CS-RZ signal and optical Nyquist filtering,” in Proceedings of OptoElectronics and Communication Conference (OECC, 2014), MO1B–1.
  11. S. Shimizu, G. Cincotti, and N. Wada, “High frequency-granularity and format independent optical channel defragmentation for flexible optical networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), paper We.1.5.1.
    [Crossref]
  12. S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of multi-hop optical add-drop network with high frequency granular optical channel defragmentation nodes,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), paper M2I.4.
    [Crossref]
  13. E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
    [Crossref]
  14. K. G. Petrillo and M. A. Foster, “Full 160-Gb/s OTDM to 16x10-Gb/s WDM conversion with a single nonlinear interaction,” Opt. Express 21(1), 508–518 (2013).
    [Crossref] [PubMed]
  15. G. Cincotti, S. Shimizu, T. Murakawa, T. Kodama, K. Hattori, M. Okuno, S. Mino, A. Himeno, T. Nagashima, M. Hasegawa, N. Wada, H. Uenohara, and T. Konishi, “Flexible Power-efficient Nyquist-OTDM transmitter, using a WSS and time-lens effect,” in Proceedings of Optical Fiber Communication Conference2015 (OFC2015), W3C.5.
    [Crossref]
  16. S. Shimizu, G. Cincotti, and N. Wada, “All-Optical Nyquist-OTDM to Nyquist-WDM conversion for Highly Flexible Optical Networks,” in Proceedings of Optical Fiber Communication Conference2016 (OFC2016), W3D.1.
    [Crossref]
  17. S. Haykin, Communication Systems (John Wiley & Sons Inc., 2001).

2013 (2)

2012 (3)

Chien, H.

Cincotti, G.

S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of no-guard-interval 6 x 25 Gbit/s all-optical Nyquist WDM system for flexible optical networks by using CS-RZ signal and optical Nyquist filtering,” in Proceedings of OptoElectronics and Communication Conference (OECC, 2014), MO1B–1.

Clausen, A. T.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Dong, Z.

Foster, M. A.

Galili, M.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Geisler, D. J.

Guan, P.

Gunkel, M.

Hans, C. H. M.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Hirooka, T.

Hu, H.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Huo, D.

Jeppesen, P.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Jia, Z.

Li, X.

Liu, R.

Mayer, H.

Nakazawa, M.

Oxenløwe, L. K.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Palushani, E.

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

Petrillo, K. G.

Ruan, P.

Schippel, A.

Shimizu, S.

S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of no-guard-interval 6 x 25 Gbit/s all-optical Nyquist WDM system for flexible optical networks by using CS-RZ signal and optical Nyquist filtering,” in Proceedings of OptoElectronics and Communication Conference (OECC, 2014), MO1B–1.

Wada, N.

S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of no-guard-interval 6 x 25 Gbit/s all-optical Nyquist WDM system for flexible optical networks by using CS-RZ signal and optical Nyquist filtering,” in Proceedings of OptoElectronics and Communication Conference (OECC, 2014), MO1B–1.

Wagner, P.

Wen, K.

Yin, Y.

Yoo, S. J. B.

Yu, J.

IEEE J. Sel. Top. Quantum Electron. (1)

E. Palushani, C. H. M. Hans, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (3)

Other (12)

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: A new dawn for the optical layer?,” IEEE Communications Magazine, S12–S20, February (2012).

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path network,” IEEE Communications Magazine, 138–145, August (2010).

M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, T. Yoshimatsu, T. Kobayashi, Y. Miyamoto, K. Yonenaga, A. Takada, O. Ishida, and S. Matsuoka, “Demonstration of novel spectrum-efficient elastic optical path network with per-channel variable capacity of 40 Gb/s to over 400 Gb/s,” in Proceedings of European Conference on Optical Communication2008 (ECOC2008), Th.3.F.6.
[Crossref]

G. Cincotti, S. Shimizu, T. Murakawa, T. Kodama, K. Hattori, M. Okuno, S. Mino, A. Himeno, T. Nagashima, M. Hasegawa, N. Wada, H. Uenohara, and T. Konishi, “Flexible Power-efficient Nyquist-OTDM transmitter, using a WSS and time-lens effect,” in Proceedings of Optical Fiber Communication Conference2015 (OFC2015), W3C.5.
[Crossref]

S. Shimizu, G. Cincotti, and N. Wada, “All-Optical Nyquist-OTDM to Nyquist-WDM conversion for Highly Flexible Optical Networks,” in Proceedings of Optical Fiber Communication Conference2016 (OFC2016), W3D.1.
[Crossref]

S. Haykin, Communication Systems (John Wiley & Sons Inc., 2001).

N. Amaya, M. Irfan, G. Zervas, K. Banias, M. Garrich, I. Henning, D. Simeonidou, Y. R. Zhou, A. Lord, K. Smith, V. J. F. Rancano, S. Liu, P. Petropoulos, and D. J. Richardson, “Gridless optical networking field trial: flexible spectrum switching, defragmentation and transport of 10G/40G/100G/555G over 620-km field fiber,” in Proceedings of European Conference on Optical Communication2011 (ECOC2011), Th.13.K.1.
[Crossref]

K. Sone, X. Wang, S. Oda, G. Nakagawa, Y. Aoki, I. Kim, P. Palacharla, T. Hoshida, M. Sekiya, and J. C. Rasmussen, “First demonstration of hitless spectrum defragmentation using real-time coherent receivers in flexible grid optical networks,” European Conference on Optical Communication 2012 (ECOC2012), Th.3.D.1.
[Crossref]

H. N. Tan, T. Inoue, K. Tanizawa, T. Kurosu, and S. Namiki, “All-optical Nyquist filtering for elastic OTDM signals and their spectral defragmentation for inter-datacenter networks,” in Proceedings of European Conference on Optical Communication2014 (ECOC2014), Tu.3.6.1.
[Crossref]

S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of no-guard-interval 6 x 25 Gbit/s all-optical Nyquist WDM system for flexible optical networks by using CS-RZ signal and optical Nyquist filtering,” in Proceedings of OptoElectronics and Communication Conference (OECC, 2014), MO1B–1.

S. Shimizu, G. Cincotti, and N. Wada, “High frequency-granularity and format independent optical channel defragmentation for flexible optical networks,” in Proceedings of European Conference on Optical Communication (ECOC, 2014), paper We.1.5.1.
[Crossref]

S. Shimizu, G. Cincotti, and N. Wada, “Demonstration of multi-hop optical add-drop network with high frequency granular optical channel defragmentation nodes,” in Proceedings of Optical Fiber Communication Conference (OFC, 2015), paper M2I.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Nyquist-OTDM and Nyquist-WDM systems (a) without MUX-format conversion, and (b) with MUX-format conversion.
Fig. 2
Fig. 2 The system configuration (a) and spectrum schematics (b).
Fig. 3
Fig. 3 Experimental setup of (a) 25Gbaud Nyquist signal, (b) 50Gbaud Nyquist signal, and (c) MUX-format conversion and receiver system.
Fig. 4
Fig. 4 Experimental spectra and eye-diagrams for (a) 25G-12.5G conversion and (b) 50G-25G conversion.
Fig. 5
Fig. 5 BER and constellation of (a) 25G-12.5G, (b) 50G-25G.
Fig. 6
Fig. 6 (a) The measured EVMs as functions of the driving voltage for the phase modulator, and (b) spectrum of phase-modulated CW laser with the driving voltage of minimum EVM condition, in 25G-12.5G conversion.
Fig. 7
Fig. 7 Experimental setup for the cascaded MUX-format conversion.
Fig. 8
Fig. 8 BERs and constellations for the cascaded MUX-format converter.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x(t)= n A n h 0 (tnT) h 0 (t)= sin(2π f 0 t) 2π f 0 t , f 0 = 1 2T
h 0 (t)= sin(2π f 0 t) 2π f 0 t = sin(2π f 0 2 t) 2π f 0 2 t cos(2π f 0 2 t) =h(t) 1 2 ( e 2π f m t + e +2π f m t ) h(t)= sin(2π f m t) 2π f m t = h 0 ( t 2 ), f m = f 0 2 .
x(t)= 1 2 n A n h(tnT)( e j2π f m (tnT) + e +j2π f m (tnT) ) = 1 2 n A n e +j π 2 n h(tnT) e j2π f m t + 1 2 n A n e j π 2 n h(tnT) e +j2π f m t .
x 0 (t)= J 0 (β) 1 2 { n A n e +j π 2 n h(tnT) e j2π f m t + n A n e j π 2 n h(tnT) e +j2π f m t }, x 1 (t)= J 1 (β) 1 2 e +j2π2 f m t { n A n e +j π 2 n h(tnT) e j2π f m t + n A n e j π 2 n h(tnT) e +j2π f m t } = J 1 (β) 1 2 { n A n e +j π 2 n h(tnT) e +j2π f m t + n A n e j π 2 n h(tnT) e +j2π3 f m t }, x 1 (t)= J 1 (β) 1 2 e j2π2 f m t { n A n e +j π 2 n h(tnT) e j2π f m t + n A n e j π 2 n h(tnT) e +j2π f m t } = J 1 (β) 1 2 { n A n e +j π 2 n h(tnT) e j2π3 f m t + n A n e j π 2 n h(tnT) e j2π f m t },
y(t)= 1 2 n A n ( J 0 (β) e +j π 2 n J 1 (β) e j π 2 n )h(tnT) e j2π f m t + 1 2 n A n ( J 0 (β) e j π 2 n + J 1 (β) e +j π 2 n )h(tnT) e +j2π f m t .
y(t)= 1 2 J 0 (β){ n A n ( e +j π 2 n e j π 2 n )h(tnT) e j2π f m t + n A n ( e j π 2 n + e +j π 2 n )h(tnT) e +j2π f m t } = 1 2 J 0 (β){ m A 2m+1 h(t(2m+1)T) e j(2π f m t+ π 2 ) + m A 2m h(t2mT) e +j2π f m t },

Metrics