Abstract

Hyperspectral imaging combining with skin optical clearing technique provides a possible way to non-invasively monitor hemodynamics of cutaneous microvessels. In order to estimate microvascular blood oxygen saturation, in this work, a lookup-table-based inverse model was developed to extract the microvascular optical and physiological properties using hyperspectral analysis. This approach showed a higher fitting degree than currently existing hyperspectral analysis methods (i.e. multiple linear regression and non-negative least square fit) in estimating blood oxygen saturation. Hypoxic stimulation experiment showed that calculated results were in accordance with physiological changes, and the relative changes of estimated oxygen saturation indicated this method appeared to be more sensitive to blood oxygen fluctuation. And a simulated blood model was used for verification here, indicating this method also showed a good accuracy in determining oxygen saturation from the simulated spectra.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging

Sorin Miclos, Sorin Viorel Parasca, Mihaela Antonina Calin, Dan Savastru, and Dragos Manea
Biomed. Opt. Express 6(9) 3420-3430 (2015)

Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage

Zongxi Li, Emmanuel Roussakis, Pieter G. L. Koolen, Ahmed M. S. Ibrahim, Kuylhee Kim, Lloyd F. Rose, Jesse Wu, Alexander J. Nichols, Yunjung Baek, Reginald Birngruber, Gabriela Apiou-Sbirlea, Robina Matyal, Thomas Huang, Rodney Chan, Samuel J. Lin, and Conor L. Evans
Biomed. Opt. Express 5(11) 3748-3764 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
    [Crossref] [PubMed]
  2. S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
    [Crossref] [PubMed]
  3. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
    [Crossref] [PubMed]
  4. M. W. Dewhirst, “Concepts of oxygen transport at the microcirculatory level,” Semin. Radiat. Oncol. 8(3), 143–150 (1998).
    [Crossref] [PubMed]
  5. S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
    [Crossref] [PubMed]
  6. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref] [PubMed]
  7. M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
    [Crossref]
  8. K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
    [PubMed]
  9. D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
    [Crossref] [PubMed]
  10. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010).
    [Crossref] [PubMed]
  11. S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
    [PubMed]
  12. L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
    [Crossref] [PubMed]
  13. K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
    [Crossref]
  14. X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
    [Crossref] [PubMed]
  15. Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
    [Crossref] [PubMed]
  16. Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
    [Crossref] [PubMed]
  17. D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
    [Crossref] [PubMed]
  18. J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
    [Crossref] [PubMed]
  19. R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
    [Crossref] [PubMed]
  20. J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
    [Crossref]
  21. J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
    [Crossref]
  22. H. Ding and C. R. Chang, “Comparison of Photometric Stereo and Spectral Analysis for Visualization and Assessment of Burn Injury from Hyperspectral Imaging,” in Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (IEEE, 2015), pp. 1–6.
  23. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
    [Crossref] [PubMed]
  24. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
    [Crossref] [PubMed]
  25. D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
    [Crossref]
  26. E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
    [Crossref] [PubMed]
  27. G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
    [Crossref] [PubMed]
  28. S. H. Brown, “Multiple Linear Regression Analysis: A Matrix Approach with MATLAB,” Alabama J. Math. 34, 1–3 (2009).
  29. X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
    [Crossref] [PubMed]
  30. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
    [Crossref] [PubMed]
  31. L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
    [Crossref] [PubMed]
  32. I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
    [Crossref] [PubMed]
  33. D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
    [Crossref] [PubMed]
  34. D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
    [Crossref] [PubMed]
  35. Z. Qian, S. Victor, Y. Gu, C. Giller, and H. Liu, “Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study,” Opt. Express 11(16), 1844–1855 (2003).
    [Crossref] [PubMed]
  36. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
    [Crossref] [PubMed]
  37. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
    [Crossref] [PubMed]
  38. D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
    [Crossref] [PubMed]
  39. S. A. Prahl, “Optical absorption of hemoglobin,” http://omlc.org/spectra/hemoglobin/summary.html .
  40. R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
    [Crossref] [PubMed]
  41. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
    [Crossref] [PubMed]
  42. R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
    [Crossref] [PubMed]
  43. C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).
  44. C. Zhu and Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011).
    [Crossref] [PubMed]
  45. B. Luo and S. He, “An improved Monte Carlo diffusion hybrid model for light reflectance by turbid media,” Opt. Express 15(10), 5905–5918 (2007).
    [Crossref] [PubMed]
  46. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  47. Y. Yang, O. Soyemi, P. J. Scott, M. R. Landry, S. M. Lee, L. Stroud, and B. R. Soller, “Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy,” Opt. Express 15(21), 13715–13730 (2007).
    [Crossref] [PubMed]

2016 (2)

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

2015 (4)

S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
[Crossref] [PubMed]

J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
[Crossref] [PubMed]

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

2014 (4)

X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
[Crossref] [PubMed]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

2013 (5)

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
[PubMed]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth,” Opt. Lett. 38(14), 2592–2595 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

2012 (4)

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

2011 (6)

C. Zhu and Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express 19(18), 17799–17812 (2011).
[Crossref] [PubMed]

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

2010 (4)

D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
[Crossref] [PubMed]

A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18(4), 3244–3257 (2010).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

2007 (3)

2006 (2)

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref] [PubMed]

2005 (1)

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

2003 (2)

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Z. Qian, S. Victor, Y. Gu, C. Giller, and H. Liu, “Look-Ahead Distance of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study,” Opt. Express 11(16), 1844–1855 (2003).
[Crossref] [PubMed]

2002 (1)

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

1998 (1)

M. W. Dewhirst, “Concepts of oxygen transport at the microcirculatory level,” Semin. Radiat. Oncol. 8(3), 143–150 (1998).
[Crossref] [PubMed]

1997 (2)

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Aizu, Y.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Allen, D. W.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Bachrach, N.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Bacskai, B. J.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Barthel, F.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Bashkatov, A. N.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Basiri, A.

Bauer, I.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Beck, C.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Boas, D. A.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Bouchard, J.-P.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Bouchard, M. B.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Brown, H. G.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Brown, S. H.

S. H. Brown, “Multiple Linear Regression Analysis: A Matrix Approach with MATLAB,” Alabama J. Math. 34, 1–3 (2009).

Butler, J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Calin, M. A.

S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
[Crossref] [PubMed]

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Cao, Y.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

Cerussi, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Chen, M.

Chen, Y.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Coburn, J.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Dale, A. M.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Devor, A.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Dewhirst, M. W.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

M. W. Dewhirst, “Concepts of oxygen transport at the microcirculatory level,” Semin. Radiat. Oncol. 8(3), 143–150 (1998).
[Crossref] [PubMed]

Dhir, R.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Ding, Z.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

Donovan, O.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

Dunn, A. K.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Durkin, A.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Farkas, D. L.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Fontanella, A. N.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Fraser, C. L.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Fredriksson, I.

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Genina, E. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Ghassemi, P.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Ghosn, M. G.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Giller, C.

Groah, S.

Gu, Y.

Guo, L.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

Hanna, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

He, H.

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

He, S.

Herminghaus, A.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Hillman, E. M.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Hirao, T.

K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
[PubMed]

Hsiang, D.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Jacques, S. L.

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jiang, C.

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

Kawase, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Kikuchi, K.

K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
[PubMed]

Koretsky, A. P.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Kozikowski, R. T.

J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
[Crossref] [PubMed]

Krauss, G. W.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

LaFramboise, W. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Landry, M. R.

Larin, K. V.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Larsson, M.

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Lee, J. A.

J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
[Crossref] [PubMed]

Lee, S. M.

Letbetter, D. S.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Levin, I. W.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

Lewis, E. N.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

Li, P.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

Libin, A.

Lim, L.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Liu, H.

Liu, Q.

Liu, Y.

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Luo, B.

Luo, Q.

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Ma, N.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

Maeda, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Manea, D.

S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
[Crossref] [PubMed]

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Masuda, Y.

K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
[PubMed]

Mathews, S.

Mathews, S. A.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Melchiorri, A.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Miclos, S.

Moeller, B. J.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

Nabili, M.

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Nichols, B.

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

Nichols, B. S.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

Niizeki, K.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Nishidate, I.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Niu, W.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Noordmans, H. J.

Nouvong, A.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
[Crossref] [PubMed]

Palmer, G. M.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt. 45(5), 1062–1071 (2006).
[Crossref] [PubMed]

Parasca, S. V.

S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
[Crossref] [PubMed]

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Pfefer, J.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Picker, O.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Pilon, L.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref] [PubMed]

Prichard, J. W.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Qian, Z.

Rajaram, N.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Ramanujam, N.

Ramella-Roman, J.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Ramella-Roman, J. C.

Rylander, H. G.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

Savastru, D.

S. Miclos, S. V. Parasca, M. A. Calin, D. Savastru, and D. Manea, “Algorithm for mapping cutaneous tissue oxygen concentration using hyperspectral imaging,” Biomed. Opt. Express 6(9), 3420–3430 (2015).
[Crossref] [PubMed]

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Schaeberle, M. D.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

Schomacker, K.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

Schöneborn, S.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Schulz, J.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Scott, P. J.

Shah, N.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Shah, S. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Shan, S.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Shi, R.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

Shonat, R. D.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Skoch, J.

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Soller, B. R.

Sorg, B.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Sorg, B. S.

J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
[Crossref] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

Soyemi, O.

Spear, S. J.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Stone, R. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Strömberg, T.

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

Stroud, L.

Tanaka, N.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Tromberg, B. J.

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

Trunina, N. A.

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

Tuchin, V. V.

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

Tunnell, J. W.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

Victor, S.

Vollmer, C.

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Wachman, E. S.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Wang, J.

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, L. V.

Wang, T.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

Welch, A. J.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

Wen, X.

X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
[Crossref] [PubMed]

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Yang, X.

Yang, Y.

Yao, J.

Yu, T.

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

Yuasa, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

Yudovsky, D.

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance,” Appl. Opt. 49(10), 1707–1719 (2010).
[Crossref] [PubMed]

D. Yudovsky and L. Pilon, “Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media,” Appl. Opt. 48(35), 6670–6683 (2009).
[Crossref] [PubMed]

Zaman, R. T.

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

Zhang, C.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

Zhang, G.

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Zhang, Y.

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Zhi, Z.

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Zhong, X.

Zhou, Y.

Zhu, C.

Zhu, D.

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

R. Shi, M. Chen, V. V. Tuchin, and D. Zhu, “Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing,” Biomed. Opt. Express 6(6), 1977–1989 (2015).
[Crossref] [PubMed]

X. Zhong, X. Wen, and D. Zhu, “Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments,” Opt. Express 22(2), 1852–1864 (2014).
[Crossref] [PubMed]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

Y. Liu, X. Yang, D. Zhu, R. Shi, and Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime,” Opt. Lett. 38(20), 4236–4239 (2013).
[Crossref] [PubMed]

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

Zuzak, K. J.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

Alabama J. Math. (1)

S. H. Brown, “Multiple Linear Regression Analysis: A Matrix Approach with MATLAB,” Alabama J. Math. 34, 1–3 (2009).

Anal. Chem. (1)

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem. 74(9), 2021–2028 (2002).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Spectrosc. Rev. (1)

M. A. Calin, S. V. Parasca, D. Savastru, and D. Manea, “Hyperspectral Imaging in the Medical Field: Present and Future,” Appl. Spectrosc. Rev. 49(6), 435–447 (2013).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[Crossref] [PubMed]

Biotechniques (1)

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques 34(2), 408–413 (2003).
[PubMed]

Comput. Methods Programs Biomed. (2)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54(3), 141–150 (1997).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (3)

K. V. Larin, M. G. Ghosn, A. N. Bashkatov, E. A. Genina, N. A. Trunina, and V. V. Tuchin, “Optical Clearing for OCT Image Enhancement and In-Depth Monitoring of Molecular Diffusion,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2012).
[Crossref]

J. Wang, N. Ma, R. Shi, Y. Zhang, T. Yu, and D. Zhu, “Sugar-induced skin optical clearing: from molecular dynamics simulation to experimental demonstration,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–7 (2014).
[Crossref]

J. Wang, Y. Zhang, P. Li, Q. Luo, and D. Zhu, “Review: tissue optical clearing window for blood flow monitoring,” IEEE J. Sel. Top. Quantum Electron. 20(2), 1–12 (2014).
[Crossref]

J. Biomed. Opt. (12)

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt. 16(8), 086012 (2011).
[Crossref] [PubMed]

D. Zhu, J. Wang, Z. Zhi, X. Wen, and Q. Luo, “Imaging dermal blood flow through the intact rat skin with an optical clearing method,” J. Biomed. Opt. 15(2), 026008 (2010).
[Crossref] [PubMed]

J. Wang, R. Shi, and D. Zhu, “Switchable skin window induced by optical clearing method for dermal blood flow imaging,” J. Biomed. Opt. 18(6), 061209 (2013).
[Crossref] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501 (2008).
[Crossref] [PubMed]

L. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt. 16(1), 011012 (2011).
[Crossref] [PubMed]

I. Fredriksson, M. Larsson, and T. Strömberg, “Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy,” J. Biomed. Opt. 17(4), 047004 (2012).
[Crossref] [PubMed]

X. Wen, S. L. Jacques, V. V. Tuchin, and D. Zhu, “Enhanced optical clearing of skin in vivo and optical coherence tomography in-depth imaging,” J. Biomed. Opt. 17(6), 066022 (2012).
[Crossref] [PubMed]

L. Guo, R. Shi, C. Zhang, D. Zhu, Z. Ding, and P. Li, “Optical coherence tomography angiography offers comprehensive evaluation of skin optical clearing in vivo by quantifying optical properties and blood flow imaging simultaneously,” J. Biomed. Opt. 21(8), 081202 (2016).
[Crossref] [PubMed]

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt. 10(4), 44004 (2005).
[Crossref] [PubMed]

R. T. Zaman, N. Rajaram, B. S. Nichols, H. G. Rylander, T. Wang, J. W. Tunnell, and A. J. Welch, “Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent,” J. Biomed. Opt. 16(7), 077008 (2011).
[Crossref] [PubMed]

A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt. 11(4), 044005 (2006).
[Crossref] [PubMed]

J. Biophotonics (1)

D. Yudovsky, A. Nouvong, K. Schomacker, and L. Pilon, “Monitoring temporal development and healing of diabetic foot ulceration using hyperspectral imaging,” J. Biophotonics 4(7-8), 565–576 (2011).
[Crossref] [PubMed]

J. Diabetes Sci. Technol. (1)

D. Yudovsky, A. Nouvong, and L. Pilon, “Hyperspectral imaging in diabetic foot wound care,” J. Diabetes Sci. Technol. 4(5), 1099–1113 (2010).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (1)

C. Jiang, H. He, P. Li, and Q. Luo, “Graphics processing unit cluster accelerated monte carlo simulation of photon transport in multi-layered tissues,” J. Innov. Opt. Health Sci. 5(5), 476–482 (2012).

Microvasc. Res. (2)

J. A. Lee, R. T. Kozikowski, and B. S. Sorg, “In vivo microscopy of microvessel oxygenation and network connections,” Microvasc. Res. 98, 29–39 (2015).
[Crossref] [PubMed]

S. Schöneborn, C. Vollmer, F. Barthel, A. Herminghaus, J. Schulz, I. Bauer, C. Beck, and O. Picker, “Vasopressin V1A receptors mediate the stabilization of intestinal mucosal oxygenation during hypercapnia in septic rats,” Microvasc. Res. 106, 24–30 (2016).
[Crossref] [PubMed]

Nat. Protoc. (1)

G. M. Palmer, A. N. Fontanella, S. Shan, G. Hanna, G. Zhang, C. L. Fraser, and M. W. Dewhirst, “In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters,” Nat. Protoc. 6(9), 1355–1366 (2011).
[Crossref] [PubMed]

Neuroimage (1)

E. M. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Proc. SPIE (1)

D. W. Allen, J.-P. Bouchard, J. Wang, P. Ghassemi, A. Melchiorri, J. Ramella-Roman, S. A. Mathews, J. Coburn, B. Sorg, Y. Chen, and J. Pfefer, “3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems,” Proc. SPIE 9325, 932508 (2015).
[Crossref]

Semin. Radiat. Oncol. (1)

M. W. Dewhirst, “Concepts of oxygen transport at the microcirculatory level,” Semin. Radiat. Oncol. 8(3), 143–150 (1998).
[Crossref] [PubMed]

Skin Res. Technol. (1)

K. Kikuchi, Y. Masuda, and T. Hirao, “Imaging of hemoglobin oxygen saturation ratio in the face by spectral camera and its application to evaluate dark circles,” Skin Res. Technol. 19(4), 499–507 (2013).
[PubMed]

Other (2)

H. Ding and C. R. Chang, “Comparison of Photometric Stereo and Spectral Analysis for Visualization and Assessment of Burn Injury from Hyperspectral Imaging,” in Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA) (IEEE, 2015), pp. 1–6.

S. A. Prahl, “Optical absorption of hemoglobin,” http://omlc.org/spectra/hemoglobin/summary.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The schematic of the experimental set-up.
Fig. 2
Fig. 2 The flow chart of LUT-NLF.
Fig. 3
Fig. 3 Simplified tissue geometry.
Fig. 4
Fig. 4 The LUTs established based on MC simulation. (a) One-layer LUT. (b) Two-layer LUT (R represents the simulated diffusion reflectance (Rsimulation)) (µa,epi and µa,derm represent the absorption coefficients of epidermis and dermis).
Fig. 5
Fig. 5 The skin imaging before and after treatment with SOCA. (a) The image at 540nm before treatment with SOCA. (b) The image at 540nm after treatment with SOCA. (c) The arteries and veins are extracted from hyperspectral images (The labeled (A-1 to A-5, V-1 to V-5) white and yellow rectangles represent the ROIs of artery and vein for SO2 statistic analysis, respectively).
Fig. 6
Fig. 6 The spatiotemporal changes of SO2 maps obtained based on LUT-NLF in cutaneous microvessels before hypoxia, during hypoxia and recovery. (The color bar represents SO2).
Fig. 7
Fig. 7 The time-lapse changes of microvascular oxyhemoglobin saturation in hypoxic stimulation. (a) The typical changes of SO2 values in the arterious A-1 ROI (the first row) and venous V-1 ROI (the second row) (Mean ± Standard Deviation). (b) The relative changes of SO2 in the arterious ROIs (form A-1 to A-5) and venous ROIs (form V-1 to V-5), and the curves and height of the colored shadows indicate mean and standard deviation, respectively. In (a) and (b) gray shade areas indicates the hypoxic stimulation period. Additionally, each column represents different methods (LUT-NLF, MLR (|Estimators|) and NNLS). (Hypoxic process was monitored at 190s, and process of recovery was monitored at 370s as shown on time axes in statistical graphs)
Fig. 8
Fig. 8 Fitting error and correlation of LUT-NLF, NNLS, MLR and MLR (|Estimators|). (a) The SO2 maps obtained from the same hyperspectral data by LUT-NLF, MLR (|Estimators|) and NNLS (The color bar represents the SO2). (b) Analysis on the same vascular pixels in (a). (i) The polar axis represents the MAE, and the different color marked circles represent different methods used. (ii) The proportion of pixels in different ranges of the Pearson correlation coefficients based on LUT-NLF, NNLS, MLR and MLR (|Estimators)|.
Fig. 9
Fig. 9 The simulated blood model for verifying the analysis methods. (a) The simulated spectra of different SO2 models (SO2 was preset as 0.3, 0.5, 0.7, and 0.9). (b) The correlational analysis between pre-set SO2 values and estimated SO2 values.
Fig. 10
Fig. 10 Analysis on the data fitting processes of four vascular pixels. The estimated SO2 of Pixel-1 and Pixel-2 are positive values. Conversely, the estimated SO2 of Pixel-3 and Pixel-4 are negative values.

Tables (1)

Tables Icon

Table 1 The estimated SO2 of Pixel-1, Pixel-2, Pixel-3 and Pixel-4 from Fig. 10.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

R λ = ( I raw λ I black λ ) / ( I std λ I black λ ) .
R Exp λ = R λ / R Background λ .
μ a.epi λ =6.60× 10 11 λ 3.33 M+7.84× 10 8 λ 3.255 ( 1M ).
μ a.derm λ =B( ε oxy λ S O 2 + ε deoxy λ (1S O 2 )).
μ s , (λ)= μ s , ( λ 0 ) ( λ/ λ 0 ) γ .
R simulation calibration = 10 k R simulation .
δ= i=1 w [ R LUT ( P , λ i ) R Exp λ i ] 2 .
S O 2 = P (1) / ( P (1)+ P (2) ) = BS O 2 / ( BS O 2 +B(1S O 2 ) ) .
A(λ)=log 1 R Exp λ =B( ε oxy λ S O 2 + ε deoxy λ (1S O 2 ))+ξ.
[ A( λ 1 ) A( λ 2 ) . . A( λ w ) ][ 1 ε oxy λ 1 ε deoxy λ 1 1 ε oxy λ 2 ε deoxy λ 2 . . . . . . 1 ε oxy λ n ε deoxy λn ][ ξ BS O 2 B(1S O 2 ) ].
AXC.
C= ( X T X) 1 X T A.
S O 2 = C(2) / ( C(2)+C(3) ) = BS O 2 / ( BS O 2 +B(1S O 2 ) ) .
min i=1 w (CX( λ i )A( λ i )) 2 , B[ 0 + ), S O 2 [ 0 1 ].
μ a,blood λ = μ oxy λ S O 2 + μ deoxy λ (1S O 2 ).
MAE= 1 W i=1 w | A Exp λ i A λ i | .

Metrics