Abstract

Static convergence and accommodation responses were measured by comparing integral photography images, binocular stereoscopic images, and real objects in a measurement range from 450 to 900 mm. The experimental results were evaluated with a multiple comparison test. It was found that six of the ten observers did not have an accommodation-convergence conflict in viewing integral photography in the range. Moreover, the required resolution was found to be 0.7 or more and less than 1.4 cycles per degree for inducing accommodation. In conclusion, integral photography can provide a natural 3D image that looks like a real object.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic visual responses of accommodation and vergence to electro-holographic images

Aya Nozaki, Masaya Mitobe, Fumio Okuyama, and Yuji Sakamoto
Opt. Express 25(4) 4542-4551 (2017)

Accommodative responses to stereoscopic three-dimensional display

Tetsuri Inoue and Hitoshi Ohzu
Appl. Opt. 36(19) 4509-4515 (1997)

Evaluation of the monocular depth cue in 3D displays

Sung-Kyu Kim, Dong-Wook Kim, Yong Moo Kwon, and Jung-Young Son
Opt. Express 16(26) 21415-21422 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
    [Crossref]
  2. M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phis. 4, 821–825 (1908).
  3. J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).
  4. A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
    [Crossref]
  5. H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).
  6. Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
    [Crossref]
  7. Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
    [Crossref]
  8. H. Hiura, S. Yano, T. Mishina, J. Arai, K. Hisatomi, Y. Iwadate, and T. Ito, “A study on accommodation response and depth perception in viewing integral photography,” in Proceedings of 3D Systems and Applications (3DSA, 2013), paper P2–2.
  9. H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
    [Crossref]
  10. H. Hoshino, F. Okano, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
    [Crossref]
  11. F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
    [Crossref] [PubMed]
  12. S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
    [Crossref] [PubMed]
  13. Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
    [Crossref] [PubMed]
  14. N. Hiruma and T. Fukuda, “Accommodation response to binocular stereoscopic TV images and their viewing conditions,” SMPTE J. 102(12), 1137–1144 (1993).
    [Crossref]

2014 (2)

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

2013 (1)

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

2012 (2)

J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

2011 (1)

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

2006 (1)

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

2004 (1)

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

1999 (1)

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

1993 (1)

N. Hiruma and T. Fukuda, “Accommodation response to binocular stereoscopic TV images and their viewing conditions,” SMPTE J. 102(12), 1137–1144 (1993).
[Crossref]

1908 (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phis. 4, 821–825 (1908).

Arai, J.

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

Bando, T.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Choi, H.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Deng, H.

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Emoto, M.

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

Fuchs, H.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Fukuda, T.

N. Hiruma and T. Fukuda, “Accommodation response to binocular stereoscopic TV images and their viewing conditions,” SMPTE J. 102(12), 1137–1144 (1993).
[Crossref]

Gekeler, F.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Gilmartin, B.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Hirsch, M.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Hiruma, N.

N. Hiruma and T. Fukuda, “Accommodation response to binocular stereoscopic TV images and their viewing conditions,” SMPTE J. 102(12), 1137–1144 (1993).
[Crossref]

Hiura, H.

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

Hong, K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Hoshino, H.

Howland, H. C.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Hwang, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Iijima, A.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Iwadate, Y.

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

Jung, J.-H.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).

Kim, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Kim, Y.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Lanman, D.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Lee, B.

J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Li, C.

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phis. 4, 821–825 (1908).

Liu, C.-L.

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Luo, C.-G.

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Maimone, A.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Marcos, S.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

Min, S.-W.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Mishina, T.

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

Mitsuhashi, T.

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

Moreno, E.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

Navarro, R.

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

Okada, Y.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Okano, F.

Raskar, R.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Schaeffel, F.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Seo, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Ukai, K.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Wang, Q.-H.

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Wattam-Bell, J.

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Wetzstein, G.

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Wolffsohn, J. S.

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Yang, H. K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

Yano, S.

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

Yuyama, I.

ACM Trans. Graph. (1)

A. Maimone, G. Wetzstein, M. Hirsch, D. Lanman, R. Raskar, and H. Fuchs, “Focus 3D: compressive accommodation display,” ACM Trans. Graph. 32(5), 1–13 (2013).
[Crossref]

Displays (1)

S. Yano, M. Emoto, and T. Mitsuhashi, “Two factors in visual fatigue caused by stereoscopic HDTV images,” Displays 25(4), 141–150 (2004).
[Crossref]

J. Disp. Technol. (1)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phis. (1)

M. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phis. 4, 821–825 (1908).

J. SID (1)

H. Deng, Q.-H. Wang, C.-G. Luo, C.-L. Liu, and C. Li, “Accommodation and convergence in integral imaging 3D display,” J. SID 22(3), 158–162 (2014).

Optom. Vis. Sci. (1)

F. Gekeler, F. Schaeffel, H. C. Howland, and J. Wattam-Bell, “Measurement of astigmatism by automated infrared photoretinoscopy,” Optom. Vis. Sci. 74(7), 472–482 (1997).
[Crossref] [PubMed]

Proc. SPIE (2)

Y. Kim, K. Hong, J. Kim, H. K. Yang, J.-M. Hwang, and B. Lee, “Accommodation measurement according to angular resolution density in three-dimensional display,” Proc. SPIE 7956, 79560Q (2011).
[Crossref]

H. Hiura, T. Mishina, J. Arai, and Y. Iwadate, “Accommodation response measurements for integral 3D image,” Proc. SPIE 9011, 90111H (2014).
[Crossref]

SID Symposium Digest Tech. Papers (1)

J.-H. Jung, K. Hong, and B. Lee, “Effect of viewing region satisfying super multi-view condition in integral imaging,” SID Symposium Digest Tech. Papers 43(1), 883–886 (2012).

SMPTE J. (1)

N. Hiruma and T. Fukuda, “Accommodation response to binocular stereoscopic TV images and their viewing conditions,” SMPTE J. 102(12), 1137–1144 (1993).
[Crossref]

Vision Res. (2)

S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vision Res. 39(12), 2039–2049 (1999).
[Crossref] [PubMed]

Y. Okada, K. Ukai, J. S. Wolffsohn, B. Gilmartin, A. Iijima, and T. Bando, “Target spatial frequency determines the response to conflicting defocus- and convergence-driven accommodative stimuli,” Vision Res. 46(4), 475–484 (2006).
[Crossref] [PubMed]

Other (1)

H. Hiura, S. Yano, T. Mishina, J. Arai, K. Hisatomi, Y. Iwadate, and T. Ito, “A study on accommodation response and depth perception in viewing integral photography,” in Proceedings of 3D Systems and Applications (3DSA, 2013), paper P2–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Target presentation method.
Fig. 3
Fig. 3 Photograph of experimental I3D targets at the viewing distances of 500 mm, 600 mm and 700 mm from the observer. The target size was set to 1.9 degrees of visual angle at all depth positions. The target size was 20 mm × 20 mm at the viewing distance of 600 mm, in Fig. (b).
Fig. 4
Fig. 4 Convergence response [Red: integral photography target (I3D: ○); Blue: binocular stereoscopic target (S3D: △); Green: real target (RO: × )].
Fig. 5
Fig. 5 Accommodation response [Red: integral photography target (I3D: ○); Blue: binocular stereoscopic target (S3D: △); Green: real target (RO: × )].
Fig. 6
Fig. 6 Comparison of convergence responses to 3D targets relative to the real targets (Red: integral photography targets; Blue: binocular stereoscopic targets).
Fig. 7
Fig. 7 Multiple comparison test results for convergence responses to 3D targets relative to the real targets (Red: integral photography targets; Blue: binocular stereoscopic targets).
Fig. 8
Fig. 8 Comparison of accommodation responses to 3D targets relative to the real targets (Red: integral photography targets; Blue: binocular stereoscopic targets).
Fig. 9
Fig. 9 Multiple comparison test results for accommodation responses to 3D targets relative to the real targets (Red: integral photography targets; Blue: binocular stereoscopic targets).
Fig. 10
Fig. 10 The number of the observers without accommodation-convergence conflict calculated by multiple comparison test (Red: integral photography targets; Blue: binocular stereoscopic targets).
Fig. 11
Fig. 11 Resolution characteristics of 3D targets.
Fig. 12
Fig. 12 Resolution characteristics of previous and our I3D displays.

Tables (3)

Tables Icon

Table 1 Specifications of the experimental setup.

Tables Icon

Table 2 Slopes of approximating lines for the 3D convergence and accommodation responses versus those of the real targets

Tables Icon

Table 3 Specifications of previous and our I3D displays and target depth positions from displays.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z max = f d p p p ,
β= ( Lz )| g | 2 p p | z | ,
β n = L 2 p L .
γ=min[ β, β n ].

Metrics