Abstract

We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-bin entangled photon pair generation from Si micro-ring resonator

Ryota Wakabayashi, Mikio Fujiwara, Ken-ichiro Yoshino, Yoshihiro Nambu, Masahide Sasaki, and Takao Aoki
Opt. Express 23(2) 1103-1113 (2015)

On-chip generation of time-and wavelength-division multiplexed multiple time-bin entanglement

Wen-Tan Fang, Yin-Hai Li, Zhi-Yuan Zhou, Li-Xin Xu, Guang-Can Guo, and Bao-Sen Shi
Opt. Express 26(10) 12912-12921 (2018)

Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors

T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue
Opt. Express 15(21) 13957-13964 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography (Springer, 2009), Chap. 1.
  2. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on post-quantum cryptography,” http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
    [Crossref]
  3. C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.
  4. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
    [Crossref] [PubMed]
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  6. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  7. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
    [Crossref] [PubMed]
  8. J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. T. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-to-chip quantum photonic interconnect by path-polarization interconversion,” Optica 3(4), 407–413 (2016).
    [Crossref]
  9. P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” https://arxiv.org/abs/1509.00768 (2015).
  10. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
    [Crossref]
  11. S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009).
    [Crossref] [PubMed]
  12. E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
    [Crossref] [PubMed]
  13. S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012).
    [Crossref] [PubMed]
  14. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24(4), 3313–3328 (2016).
    [Crossref] [PubMed]
  15. J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19(2), 1470–1483 (2011).
    [Crossref] [PubMed]
  16. L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38(11), 1960–1962 (2013).
    [Crossref] [PubMed]
  17. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
    [Crossref] [PubMed]
  18. R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from Si micro-ring resonator,” Opt. Express 23(2), 1103–1113 (2015).
    [Crossref] [PubMed]
  19. D. Grassani, S. Azzini, M. Liscidini, M. Galli, M. J. Strain, M. Sorel, J. E. Sipe, and D. Bajoni, “Micrometer-scale integrated silicon source of time-energy entangled photons,” Optica 2(2), 88–94 (2015).
    [Crossref]
  20. F. Mazeas and M. Traetta, M. Bendivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. B. Ngaah, T. Lunghi, E. Pieholle, N. B. Plougonven, X. L. Roux, E. Cassan, D. M. Morini, L. Vivien, G. Sauder, L. Labonte, and S. Tanzilli, “Engineered silicon ring resonator for wavelength multiplexed photon-pair generation,” https://arxiv.org/abs/1609.00521 (2016).
  21. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
    [Crossref] [PubMed]
  22. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref] [PubMed]
  23. Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
    [Crossref]
  24. B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
    [Crossref]
  25. B. E. Little, J.-P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22(1), 4–6 (1997).
    [Crossref] [PubMed]
  26. A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).
  27. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
    [Crossref] [PubMed]
  28. P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
    [Crossref]

2016 (2)

2015 (3)

2013 (5)

2012 (3)

2011 (2)

2009 (1)

2008 (1)

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

2006 (2)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2000 (1)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

1997 (1)

1992 (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Almeida, V. R.

Aoki, T.

Azzini, S.

Baehr-Jones, T.

Baets, R.

L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38(11), 1960–1962 (2013).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Baets, R. G.

Bajoni, D.

Barea, L. A. M.

Beckx, S.

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

bienstman, P

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Bienstman, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bogaerts, W

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Bogaerts, W.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

L. Olislager, J. Safioui, S. Clemmen, K. P. Huy, W. Bogaerts, R. Baets, P. Emplit, and S. Massar, “Silicon-on-insulator integrated source of polarization-entangled photons,” Opt. Lett. 38(11), 1960–1962 (2013).
[Crossref] [PubMed]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009).
[Crossref] [PubMed]

Bonneau, D.

Boyraz, Ö.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Brassard, G.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Brendel, J.

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Chen, J.

Chu, S. T.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Clark, A. S.

Clemmen, S.

De Heyn, P.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dimitropoulos, D.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Ding, R.

Dorenbos, S. N.

Dumon, P

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Emplit, P.

Engin, E.

Ezaki, M.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Fan, J.

Fedeli, J. M.

Fegadolli, W. S.

Fournier, M.

Frateschi, N.

Fujiwara, M.

Galli, M.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Gould, M.

Grassani, D.

Hadfield, R. H.

Helt, L. G.

Hochberg, M.

Huang, S.

Huy, K. P.

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Jaenen, P

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Jalali, B.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Jen, A. K. Y.

Kumar, R.

Laine, J.-P.

Levine, Z. H.

Li, A.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

Liang, T. K

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Liscidini, M.

Little, B. E.

Luo, J.

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Massar, S.

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Migdall, A. L.

Miki, S.

Mookherjea, S.

Nambu, Y.

R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from Si micro-ring resonator,” Opt. Express 23(2), 1103–1113 (2015).
[Crossref] [PubMed]

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Natarajan, C. M.

Numes, L.R

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

O’Brien, J. L.

Ohira, K.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Olislager, L.

Oliveira, J. E. B.

Panepucci, R. R.

priem, G

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Raghunathan, V.

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Safioui, J.

Santagati, R.

Sasaki, M.

Savanier, M.

Scherer, A.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Silverstone, J. W.

J. Wang, D. Bonneau, M. Villa, J. W. Silverstone, R. Santagati, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. T. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-to-chip quantum photonic interconnect by path-polarization interconversion,” Optica 3(4), 407–413 (2016).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Sipe, J. E.

Sorel, M.

Strain, M. J.

Suzuki, N.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

Tanner, M. T.

Terai, H.

Thompson, M. G.

Thourhout, D. V

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Tomita, A.

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Tuchiya, M

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Valini, F.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vargas, G.

Villa, M.

Wakabayashi, R.

Wang, J.

Wang, X.

Wang, Z.

Wouters, J

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Yamashita, T.

Yoshida, H.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Yoshino, K.

R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from Si micro-ring resonator,” Opt. Express 23(2), 1103–1113 (2015).
[Crossref] [PubMed]

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(3), 412–421 (2006).
[Crossref]

J. Mod. Opt. (1)

Y. Nambu, K. Yoshino, and A. Tomita, “Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit,” J. Mod. Opt. 55(12), 1953–1970 (2008).
[Crossref]

Jpn. J. Appl. Phys. (1)

P Dumon, G priem, L.R Numes, W Bogaerts, D. V Thourhout, P bienstman, T. K Liang, M Tuchiya, P Jaenen, S. Beckx, J Wouters, and R. Baets, “Linear and nonlinear nanophotonic devices based on silicon-on-insulator wire waveguides,” Jpn. J. Appl. Phys. 45(8B), 6589–6602 (2006).
[Crossref]

Laser Photonics Rev. (2)

A. Li, T. Van Vaerenbergh, P. De Heyn, P. Bienstman, and W. Bogaerts, “Backscattering in silicon microring resonators: a quantitative analysis,” Laser Photonics Rev. 3, 420–431 (2015).

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nat. Photonics 8(2), 104–108 (2013).
[Crossref]

Opt. Express (10)

S. Clemmen, K. P. Huy, W. Bogaerts, R. G. Baets, P. Emplit, and S. Massar, “Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators,” Opt. Express 17(19), 16558–16570 (2009).
[Crossref] [PubMed]

J. Chen, Z. H. Levine, J. Fan, and A. L. Migdall, “Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator,” Opt. Express 19(2), 1470–1483 (2011).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K. Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20(13), 14722–14733 (2012).
[Crossref] [PubMed]

S. Azzini, D. Grassani, M. J. Strain, M. Sorel, L. G. Helt, J. E. Sipe, M. Liscidini, M. Galli, and D. Bajoni, “Ultra-low power generation of twin photons in a compact silicon ring resonator,” Opt. Express 20(21), 23100–23107 (2012).
[Crossref] [PubMed]

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21(8), 10208–10214 (2013).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24(4), 3313–3328 (2016).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement,” Opt. Express 21(23), 27826–27834 (2013).
[Crossref] [PubMed]

R. Wakabayashi, M. Fujiwara, K. Yoshino, Y. Nambu, M. Sasaki, and T. Aoki, “Time-bin entangled photon pair generation from Si micro-ring resonator,” Opt. Express 23(2), 1103–1113 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (2)

W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000).
[Crossref] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Other (5)

D. J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum Cryptography (Springer, 2009), Chap. 1.

L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner, and D. Smith-Tone, “Report on post-quantum cryptography,” http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
[Crossref]

C. H. Bennett and G. Brassard, “Quantum cryptography: public-key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 1984), pp. 175–179.

F. Mazeas and M. Traetta, M. Bendivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. B. Ngaah, T. Lunghi, E. Pieholle, N. B. Plougonven, X. L. Roux, E. Cassan, D. M. Morini, L. Vivien, G. Sauder, L. Labonte, and S. Tanzilli, “Engineered silicon ring resonator for wavelength multiplexed photon-pair generation,” https://arxiv.org/abs/1609.00521 (2016).

P. Sibson, C. Erven, M. Godfrey, S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J. L. O’Brien, and M. G. Thompson, “Chip-based quantum key distribution,” https://arxiv.org/abs/1509.00768 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Photograph of the Si ring resonator with a fiber array. Inset, the dimension of the resonator is described. (b) Photograph of the cooling box. The ring resonator is installed in the center of the box.
Fig. 2
Fig. 2 Resonant peaks of the Si ring resonator of 10 μm radius at 28.907 degree centigrade. The wavelength of a pump laser is set at 1546.0593 nm. Photon pairs of the first and second are used in time-bin entanglement experiments.
Fig. 3
Fig. 3 Coincidence histogram of the second pair. The pump power is set −3.0 dBm (0.5 mW). The operation temperature of the Si ring resonator is 28.907 °C. The time window for one data point is set 64 ps.
Fig. 4
Fig. 4 (a) Conceptual view of experimental setup for time-bin entanglement, (b) spatial multiplexing of time-bin entanglement experiment with double coherent pump light input. Hatched area in (a) is replaced by (b).
Fig. 5
Fig. 5 X-basis coincidence counts of the second pair as a function of the operation temperature of the PLC (signal photon side). (a) Visibilities of the second pair, and (b) visibilities of the first pair in Fig. 2. Red points are coincidence counts of X0-X’0. Blue points are of X0-X’1. Fitted curves are obtained using sinusoidal function. The pump light power is set 0.5mW. The time window for one data point is set 64 ps.
Fig. 6
Fig. 6 X-basis coincidence counts of the first pair as a function of the operation temperature of the PLC (signal photon side) by the double-port pumping at(a) Port 1 and (b) Port 2. Red points are coincidence counts of X0-X’0. Blue points are of X0-X’1. The temperature of Si ring is 32.207°C. The pump light power from each input port is set 0.5 mW. The time window for one data point is set 64 ps.
Fig. 7
Fig. 7 Transmission rates from one add port to a drop port at 32.207 °C. (a) The pump laser is input from one add port. (b) The pump laser is input from two add ports. Error bars correspond to standard deviations of ten time measurements.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 2 { a ^ (t) b ^ (t)+ e iθ a ^ (t+τ) b ^ (t+τ) }| 0 a , 0 b .
|ψ final(X-basis) = 1 2 2 [ ( 1+ e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X0 b ^ (t) X 0 +( 1+ e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X1 b ^ (t) X 1 +( 1 e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X0 b ^ (t) X 1   +( 1 e i( θ 1 + θ 2 +θ(tτ)θ(t)) ) a ^ (t) X1 b ^ (t) X 0 ] | 00 s | 00 i ,

Metrics