Abstract

We developed pulse-shaper-assisted coherent two-dimensional (2D) electronic spectroscopy in liquids using fluorescence detection. A customized pulse shaper facilitates shot-to-shot modulation at 1 kHz and is employed for rapid scanning over all time delays. A full 2D spectrum with 15 × 15 pixels is obtained in approximately 6 s of measurement time (plus further averaging if needed). Coherent information is extracted from the incoherent fluorescence signal via 27-step phase cycling. We exemplify the technique on cresyl violet in ethanol and recover literature-known oscillations as a function of population time. Signal-to-noise behavior is analyzed as a function of the amount of averaging. Rapid scanning provides a 2D spectrum with a root-mean-square error of < 0.05 after 1 min of measurement time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Coherent two-dimensional fluorescence micro-spectroscopy

Sebastian Goetz, Donghai Li, Verena Kolb, Jens Pflaum, and Tobias Brixner
Opt. Express 26(4) 3915-3925 (2018)

Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression

Xiaonan Ma, Jakub Dostál, and Tobias Brixner
Opt. Express 24(18) 20781-20791 (2016)

Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz

Nicholas M. Kearns, Randy D. Mehlenbacher, Andrew C. Jones, and Martin T. Zanni
Opt. Express 25(7) 7869-7883 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
    [Crossref] [PubMed]
  2. S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
    [Crossref]
  3. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [Crossref] [PubMed]
  4. S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
    [Crossref] [PubMed]
  5. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
    [Crossref] [PubMed]
  6. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
    [Crossref] [PubMed]
  7. L. M. Kiefer and K. J. Kubarych, “Solvent-dependent dynamics of a series of rhenium photoactivated catalysts measured with ultrafast 2DIR,” J. Phys. Chem. A 119(6), 959–965 (2015).
    [Crossref] [PubMed]
  8. W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
    [Crossref]
  9. Y. Tanimura and S. Mukamel, “Two-dimensional femtosecond vibrational spectroscopy of liquids,” J. Chem. Phys 99(12), 9496–9511 (1993).
    [Crossref]
  10. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).
  11. L. Lepetit and M. Joffre, “Two-dimensional nonlinear optics using Fourier-transform spectral interferometry,” Opt. Lett. 21(8), 564–566 (1996).
    [Crossref] [PubMed]
  12. C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
    [Crossref]
  13. U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
    [Crossref] [PubMed]
  14. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
    [Crossref]
  15. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  16. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
    [Crossref] [PubMed]
  17. J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
    [Crossref]
  18. P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
    [Crossref]
  19. M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
    [Crossref]
  20. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
    [Crossref] [PubMed]
  21. M. Cho, Two-Dimensional Optical Spectroscopy (CRC, 2009).
    [Crossref]
  22. J. Jeon, S. Park, and M. Cho, “Two-dimensional optical spectroscopy: theory and experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
    [Crossref]
  23. P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
    [Crossref]
  24. R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” PNAS 104(36), 14190–14196 (2007).
    [Crossref] [PubMed]
  25. M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
    [Crossref] [PubMed]
  26. P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
    [Crossref]
  27. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
    [Crossref] [PubMed]
  28. W. Wagner, C. Li, J. Semmlow, and W. S. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13(10), 3697–3706 (2005).
    [Crossref] [PubMed]
  29. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [Crossref] [PubMed]
  30. H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
    [Crossref] [PubMed]
  31. M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
    [Crossref] [PubMed]
  32. G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
    [Crossref]
  33. J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
    [Crossref]
  34. G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
    [Crossref] [PubMed]
  35. P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
    [Crossref] [PubMed]
  36. C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32(5), 933–945 (2015).
    [Crossref]
  37. A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
    [Crossref] [PubMed]
  38. F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
    [Crossref] [PubMed]
  39. D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
    [Crossref]
  40. I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
    [Crossref] [PubMed]
  41. L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
    [Crossref] [PubMed]
  42. B. Spokoyny, C. J. Koh, and Elad Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
    [Crossref] [PubMed]
  43. X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781 (2016).
    [Crossref] [PubMed]
  44. M. Kasha, “Characterization of electronic transitions in complex molecules,” Discuss. Faraday Soc. 9, 14–19 (1950).
    [Crossref]
  45. K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
    [Crossref] [PubMed]
  46. A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90(3), 427–430 (2008).
    [Crossref]
  47. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
    [Crossref]
  48. D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
    [Crossref]
  49. D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
    [Crossref] [PubMed]

2016 (1)

2015 (7)

B. Spokoyny, C. J. Koh, and Elad Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32(5), 933–945 (2015).
[Crossref]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

L. M. Kiefer and K. J. Kubarych, “Solvent-dependent dynamics of a series of rhenium photoactivated catalysts measured with ultrafast 2DIR,” J. Phys. Chem. A 119(6), 959–965 (2015).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
[Crossref]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

2014 (6)

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref] [PubMed]

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

2013 (5)

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
[Crossref]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

2011 (3)

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

2010 (1)

2009 (2)

C.-H. Tseng, S. Matsika, and T. C. Weinacht, “Two-dimensional ultrafast Fourier transform spectroscopy in the deep ultraviolet,” Opt. Express 17(21), 18788–18793 (2009).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

2008 (4)

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90(3), 427–430 (2008).
[Crossref]

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref] [PubMed]

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

2007 (2)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” PNAS 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

2005 (2)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

W. Wagner, C. Li, J. Semmlow, and W. S. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13(10), 3697–3706 (2005).
[Crossref] [PubMed]

2004 (2)

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

2003 (2)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

1999 (1)

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

1998 (2)

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

1996 (1)

1993 (1)

Y. Tanimura and S. Mukamel, “Two-dimensional femtosecond vibrational spectroscopy of liquids,” J. Chem. Phys 99(12), 9496–9511 (1993).
[Crossref]

1976 (1)

W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
[Crossref]

1950 (1)

M. Kasha, “Characterization of electronic transitions in complex molecules,” Discuss. Faraday Soc. 9, 14–19 (1950).
[Crossref]

Aeschlimann, M.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

Arnold, M. S.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Aspuru-Guzik, A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

Aue, W. P.

W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
[Crossref]

Autry, T. M.

Bartholdi, E.

W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
[Crossref]

Bizimana, L. A.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Bowlan, P.

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

Brazard, J.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Brinks, D.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Brixner, T.

X. Ma, J. Dostál, and T. Brixner, “Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression,” Opt. Express 24(18), 20781 (2016).
[Crossref] [PubMed]

C. Schwarz, O. Hüter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32(5), 933–945 (2015).
[Crossref]

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
[Crossref]

F. Kanal, S. Keiber, R. Eck, and T. Brixner, “100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy,” Opt. Express 22(14), 16965–16975 (2014).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Camargo, F. V. A.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Carbery, W. P.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Cho, M.

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

M. Cho, Two-Dimensional Optical Spectroscopy (CRC, 2009).
[Crossref]

J. Jeon, S. Park, and M. Cho, “Two-dimensional optical spectroscopy: theory and experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
[Crossref]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Crozatier, V.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Cundiff, S. T.

G. Nardin, T. M. Autry, K. L. Silverman, and S. T. Cundiff, “Multidimensional coherent photocurrent spectroscopy of a semiconductor nanostructure,” Opt. Express 21(23), 28617–28627 (2013).
[Crossref]

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Curmi, P. M. G.

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Dawlaty, J. M.

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

De, A. K.

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Diekmann, M.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Dimler, F.

Dostál, J.

Eck, R.

Elsaesser, T.

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

Engels, B.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Ernst, R. R.

W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
[Crossref]

Feurer, T.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90(3), 427–430 (2008).
[Crossref]

Fischer, A.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Fleming, G. R.

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Foerster, M.

Forget, N.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

Gallagher Faeder, S. M.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

Galler, A.

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90(3), 427–430 (2008).
[Crossref]

Gellen, T.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Gieseking, B.

Grechko, M.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Hamm, P.

P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
[Crossref]

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[Crossref]

Harel, Elad

Heisler, I. A.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Hernando, J.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Hildner, R.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Hochstrasser, R. M.

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” PNAS 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
[Crossref]

Hüter, O.

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

Jeon, J.

J. Jeon, S. Park, and M. Cho, “Two-dimensional optical spectroscopy: theory and experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
[Crossref]

Joffre, M.

Johnson, N. P.

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

Jonas, D. M.

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

Kabir, A.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Kambhampati, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Kanal, F.

Karki, K. J.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Kasha, M.

M. Kasha, “Characterization of electronic transitions in complex molecules,” Discuss. Faraday Soc. 9, 14–19 (1950).
[Crossref]

Keiber, S.

Keusters, D.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Kiefer, L. M.

L. M. Kiefer and K. J. Kubarych, “Solvent-dependent dynamics of a series of rhenium photoactivated catalysts measured with ultrafast 2DIR,” J. Phys. Chem. A 119(6), 959–965 (2015).
[Crossref] [PubMed]

Koh, C. J.

Kramer, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Kubarych, K. J.

L. M. Kiefer and K. J. Kubarych, “Solvent-dependent dynamics of a series of rhenium photoactivated catalysts measured with ultrafast 2DIR,” J. Phys. Chem. A 119(6), 959–965 (2015).
[Crossref] [PubMed]

Kuehn, W.

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

Langhojer, F.

Lepetit, L.

Li, C.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Lim, M

P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
[Crossref]

Löhrig, T.

Lonergan, M. C.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Lott, G. A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Ma, X.

Marcus, A. H.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Matsika, S.

McDonough, T. J.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Meech, S. R.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Mehlenbacher, R. D.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Melchior, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Miller, R. J. D.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Moca, R.

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

Monahan, D.

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

Moody, I.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Mukamel, S.

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

Y. Tanimura and S. Mukamel, “Two-dimensional femtosecond vibrational spectroscopy of liquids,” J. Chem. Phys 99(12), 9496–9511 (1993).
[Crossref]

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

Nardin, G.

Nelson, K. A.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Nieder, J. B.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Nuernberger, P.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
[Crossref]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Park, S.

J. Jeon, S. Park, and M. Cho, “Two-dimensional optical spectroscopy: theory and experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
[Crossref]

Perdomo-Ortiz, A.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

Pfeiffer, W.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Pullerits, T.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Reimann, K.

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Ruetzel, S.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
[Crossref]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Saari, J. I.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Schleussner, C.-F.

Schneider, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Scholes, G. D.

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Schwarz, C.

Seibt, J.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

Selig, U.

Semmlow, J.

Silverman, K. L.

Spokoyny, B.

Stefani, F. D.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Stiopkin, I. V.

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Strüber, C.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Suzaki, Y.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Tan, H.-S.

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Tanimura, Y.

Y. Tanimura and S. Mukamel, “Two-dimensional femtosecond vibrational spectroscopy of liquids,” J. Chem. Phys 99(12), 9496–9511 (1993).
[Crossref]

Tekavec, P. F.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Tian, P.

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Tseng, C.-H.

Tuchscherer, P.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Turner, D. B.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Tyagi, P.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Utterback, J. K.

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

van Dijk, E. M. H. P.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

van Hulst, N. F.

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

von Hippel, P. H.

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

Voronine, D. V.

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

Wagner, W.

Walsh, B.

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

Walter, C.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Warren, W. S.

W. Wagner, C. Li, J. Semmlow, and W. S. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13(10), 3697–3706 (2005).
[Crossref] [PubMed]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Weinacht, T. C.

Widom, J. R.

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

Wilk, K. E.

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Woerner, M.

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

Wu, M.-Y.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Zanni, M.

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[Crossref]

Zanni, M. T.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional electronic spectroscopy of photochemical reactions,” Angew. Chem. Int. Ed. 54(39), 11368–11386 (2015).
[Crossref]

Annu. Rev. Phys. Chem. (2)

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional Fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54, 425–463 (2003).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Galler and T. Feurer, “Pulse shaper assisted short laser pulse characterization,” Appl. Phys. B 90(3), 427–430 (2008).
[Crossref]

Chem. Phys. Lett. (2)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. Gallagher Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297(3–4), 307–313 (1998).
[Crossref]

Chem. Rev. (1)

M. Cho, “Coherent two-dimensional optical spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani, J. B. Nieder, J. Hernando, and N. F. van Hulst, “Ultrafast dynamics of single molecules,” Chem. Soc. Rev. 43(8), 2476–2491 (2014).
[Crossref] [PubMed]

Discuss. Faraday Soc. (1)

M. Kasha, “Characterization of electronic transitions in complex molecules,” Discuss. Faraday Soc. 9, 14–19 (1950).
[Crossref]

J. Chem. Phys (1)

Y. Tanimura and S. Mukamel, “Two-dimensional femtosecond vibrational spectroscopy of liquids,” J. Chem. Phys 99(12), 9496–9511 (1993).
[Crossref]

J. Chem. Phys. (5)

W. P. Aue, E. Bartholdi, and R. R. Ernst, “Two-dimensional spectroscopy. Application to nuclear magnetic resonance,” J. Chem. Phys. 64(5), 2229–2246 (1976).
[Crossref]

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

H.-S. Tan, “Theory and phase-cycling scheme selection principles of collinear phase coherent multi-dimensional optical spectroscopy,” J. Chem. Phys. 129, 124501 (2008).
[Crossref] [PubMed]

A. K. De, D. Monahan, J. M. Dawlaty, and G. R. Fleming, “Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling,” J. Chem. Phys. 140(19), 194201 (2014).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (3)

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

P. Tyagi, J. I. Saari, B. Walsh, A. Kabir, V. Crozatier, N. Forget, and P. Kambhampati, “Two-color two-dimensional electronic spectroscopy using dual acousto-optic pulse shapers for complete amplitude, phase, and polarization control of femtosecond laser pulses,” J. Phys. Chem. A 117(29), 6264–6269 (2013).
[Crossref] [PubMed]

L. M. Kiefer and K. J. Kubarych, “Solvent-dependent dynamics of a series of rhenium photoactivated catalysts measured with ultrafast 2DIR,” J. Phys. Chem. A 119(6), 959–965 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

P. Hamm, M Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102(31), 6123–6138 (1998).
[Crossref]

J. Phys. Chem. Lett. (1)

D. B. Turner, K. E. Wilk, P. M. G. Curmi, and G. D. Scholes, “Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy,” J. Phys. Chem. Lett. 2, 1904–1911 (2011).
[Crossref]

Nat. Commun. (2)

K. J. Karki, J. R. Widom, J. Seibt, I. Moody, M. C. Lonergan, T. Pullerits, and A. H. Marcus, “Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell,” Nat. Commun. 5, 5869 (2014).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Nature (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

New J. Phys. (2)

M. Woerner, W. Kuehn, P. Bowlan, K. Reimann, and T. Elsaesser, “Ultrafast two-dimensional terahertz spectroscopy of elementary excitations in solids,” New J. Phys. 15(2), 025039 (2013).
[Crossref]

J. R. Widom, N. P. Johnson, P. H. von Hippel, and A. H. Marcus, “Solution conformation of 2-aminopurine dinucleotide determined by ultraviolet two-dimensional fluorescence spectroscopy,” New J. Phys. 15, 025028 (2013).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Today (1)

S. T. Cundiff and S. Mukamel, “Optical multidimensional coherent spectroscopy,” Phys. Today 66(7), 44–49 (2013).
[Crossref]

PNAS (3)

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” PNAS 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

R. M. Hochstrasser, “Two-dimensional spectroscopy at infrared and optical frequencies,” PNAS 104(36), 14190–14196 (2007).
[Crossref] [PubMed]

G. A. Lott, A. Perdomo-Ortiz, J. K. Utterback, J. R. Widom, A. Aspuru-Guzik, and A. H. Marcus, “Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy,” PNAS 108(40), 16521–16526 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

I. A. Heisler, R. Moca, F. V. A. Camargo, and S. R. Meech, “Two-dimensional electronic spectroscopy based on conventional optics and fast dual chopper data acquisition,” Rev. Sci. Instrum. 85(6), 063103 (2014).
[Crossref] [PubMed]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277–3295 (1997).
[Crossref]

Science (3)

M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Coherent two-dimensional nanoscopy,” Science 333, 1723–1726 (2011).
[Crossref] [PubMed]

P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, “Femtosecond phase-coherent two-dimensional spectroscopy,” Science 300, 1553–1555 (2003).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324, 1169–1173 (2009).
[Crossref] [PubMed]

Other (4)

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

M. Cho, Two-Dimensional Optical Spectroscopy (CRC, 2009).
[Crossref]

J. Jeon, S. Park, and M. Cho, “Two-dimensional optical spectroscopy: theory and experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
[Crossref]

P. Hamm and M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University, 2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Feynman diagrams for (a) rephasing and (b) nonrephasing contribution in a two-level system. Solid arrows signify excitation pulses, dashed arrows the fluorescence signal.
Fig. 2
Fig. 2 Experiment. (a) Setup for rapid-scan 2D fluorescence spectroscopy, consisting of a Ti:Sa laser, a noncollinear optical parametrical amplifier (NOPA) (TOPAS, Light Conversion), a single-prism compressor, a pulse shaper and an avalanche photodiode. The core item is the pulse shaper based on an acousto-optical programmable dispersive filter (AOPDF), facilitating compression of the incoming pulses as well as the generation of multiple-pulse sequences with arbitrary phases and delays on a shot-to-shot basis. Neither spatial beam splitting nor mechanically moving components are necessary and therefore no adjustment of spatial overlaps in the excitation path is required. (b) Absorption (blue) and emission (green) spectra of cresyl violet in ethanol, and spectrum of excitation pulses (red).
Fig. 3
Fig. 3 Real part of the time-domain (a, c) and frequency-domain maps (b, d) of the (a, b) rephasing and (c, d) nonrephasing contributions to the total signal with axes labeled for the rotating-frame measurement. The color bar indicates the signal amplitude at each pixel and has been normalized to the highest absolute value for each graph separately.
Fig. 4
Fig. 4 (a) Absorptive spectra at selected population times (0 fs, 100 fs, 200 fs); the color bar indicates the amplitude of the signal at each pixel and has been normalized to the highest absolute value for T = 0 fs. (b) Time evolution of the signal integrated over the region of interest marked with a green square in (a).
Fig. 5
Fig. 5 (a) Absorptive 2D spectra at a population time of T = 50 fs for varying amounts of averaging, from left to right: 1×, 10×, 400×; the color bar indicates the amplitude of the signal at each pixel, normalized individually for each plot to the maximum value. The normalization factor is further adjusted in the evaluation of the error for each A such that e(A) is minimized. (b) Blue: Error e(A) of the absorptive 2D maps for various amounts of averaging A with respect to the absorptive 2D map using A = 400 as a reference; red: expected errors for Gaussian statistics with e ( A ) = e ( A = 1 ) A.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p ˜ RP ( 4 ) ( r , t ) Q RP ( τ , T , t , t ) e i γ 0 ω 0 ( τ t ) e i ( ϕ 1 + ϕ 2 + ϕ 3 ϕ 4 ) e i ( k 1 + k 2 + k 3 k 4 ) r
p ˜ 4 ( β , γ , δ ) = 1 L M N n = 0 N 1 m = 0 M 1 l = 0 L 1 p ( τ , T , t , l Δ ϕ 21 , m Δ ϕ 31 , n Δ ϕ 41 ) e i l β Δ ϕ 21 e i m γ Δ ϕ 31 e i n δ Δ ϕ 41 .
e ( A ) = [ 1 X 2 i , j = 1 X | x i j ( A ) x i j ( A = 400 ) | 2 ] 1 / 2 ,

Metrics