Abstract

We demonstrate design, fabrication, and characterization of two-dimensional photonic crystal (PhC) waveguides on a suspended silicon rich nitride (SRN) platform for applications at telecom wavelengths. Simulation results suggest that a 210 nm photonic band gap can be achieved in such PhC structures. We also developed a fabrication process to realize suspended PhC waveguides with a transmission bandwidth of 20 nm for a W1 PhC waveguide and over 70 nm for a W0.7 PhC waveguide. Using the Fabry–Pérot oscillations of the transmission spectrum we estimated a group index of over 110 for W1 PhC waveguides. For a W1 waveguide we estimated a propagation loss of 53 dB/cm for a group index of 37 and for a W0.7 waveguide the lowest propagation was 4.6 dB/cm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38(2), 154–156 (2013).
    [Crossref] [PubMed]
  2. H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
    [Crossref] [PubMed]
  3. K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
    [Crossref] [PubMed]
  4. A. A. Liles, K. Debnath, and L. O’Faolain, “Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector,” Opt. Lett. 41(5), 894–897 (2016).
    [Crossref] [PubMed]
  5. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
    [Crossref] [PubMed]
  6. W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
    [Crossref] [PubMed]
  7. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [Crossref]
  8. A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
    [Crossref] [PubMed]
  9. B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
    [Crossref]
  10. C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
    [Crossref] [PubMed]
  11. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref] [PubMed]
  12. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]
  13. D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
    [Crossref] [PubMed]
  14. D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
    [Crossref] [PubMed]
  15. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
    [Crossref] [PubMed]
  16. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
    [Crossref] [PubMed]
  17. X. Checoury, M. El Kurdi, Z. Han, and P. Boucaud, “Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator,” Opt. Express 17(5), 3500–3507 (2009).
    [Crossref] [PubMed]
  18. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
    [Crossref]
  19. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
    [Crossref]
  20. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).
  21. S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
    [Crossref]
  22. C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23(20), 25827–25837 (2015).
    [Crossref] [PubMed]
  23. C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
    [Crossref]
  24. T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
    [Crossref]
  25. T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
    [Crossref]
  26. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
    [Crossref] [PubMed]
  27. C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
    [Crossref]

2017 (1)

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

2016 (1)

2015 (2)

C. J. Krückel, A. Fülöp, T. Klintberg, J. Bengtsson, P. A. Andrekson, and V. Torres-Company, “Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides,” Opt. Express 23(20), 25827–25837 (2015).
[Crossref] [PubMed]

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

2014 (2)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

2013 (2)

K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38(2), 154–156 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

2012 (5)

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

2011 (2)

H. C. Nguyen, Y. Sakai, M. Shinkawa, N. Ishikura, and T. Baba, “10 Gb/s operation of photonic crystal silicon optical modulators,” Opt. Express 19(14), 13000–13007 (2011).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

2010 (4)

2009 (2)

X. Checoury, M. El Kurdi, Z. Han, and P. Boucaud, “Enhanced spontaneous Raman scattering in silicon photonic crystal waveguides on insulator,” Opt. Express 17(5), 3500–3507 (2009).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

2008 (2)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

2001 (1)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Agarwal, A. M.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Alegre, T. P. M.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Andrekson, P. A.

Baba, T.

Beggs, D. M.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[Crossref] [PubMed]

Bengtsson, J.

Boucaud, P.

Chakravarty, S.

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Chan, J.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Checoury, X.

Chee, A. K. L.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chen, G. F.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Chen, R. T.

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Clark, A.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Collins, M.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Corcoran, B.

Dal Negro, L.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Deasy, K.

Debnath, K.

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Dominguez, T.

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Domínguez Bucio, T.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Ebnali-Heidari, M.

Eggleton, B. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

El Kurdi, M.

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Ferrera, M.

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Fülöp, A.

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Gardes, F.

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Gardes, F. Y.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

Grillet, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Han, Z.

Hill, J. T.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Hugonin, J. P.

Ishikura, N.

Kampfrath, T.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

Khokhar, A.

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Khokhar, A. Z.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Kimerling, L. C.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Klintberg, T.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Krause, A.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Krauss, T. F.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[Crossref] [PubMed]

J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, “Coupling into slow-mode photonic crystal waveguides,” Opt. Lett. 32(18), 2638–2640 (2007).
[Crossref] [PubMed]

Krückel, C. J.

Kuipers, L.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

Lacava, C.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Lai, W. C.

W. C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett. 37(7), 1208–1210 (2012).
[Crossref] [PubMed]

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Lalanne, P.

Lee, B. S.

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

Li, J.

Lidzey, D. G.

Liles, A. A.

Lin, C. Y.

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Mashanovich, G. Z.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Michel, J.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Minissale, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Monat, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

Moss, D. J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Ng, S. K.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Ng, T. D. K.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Nguyen, H. C.

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

O’Faolain, L.

A. A. Liles, K. Debnath, and L. O’Faolain, “Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector,” Opt. Lett. 41(5), 894–897 (2016).
[Crossref] [PubMed]

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

K. Debnath, K. Welna, M. Ferrera, K. Deasy, D. G. Lidzey, and L. O’Faolain, “Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide,” Opt. Lett. 38(2), 154–156 (2013).
[Crossref] [PubMed]

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express 18(22), 22915–22927 (2010).
[Crossref] [PubMed]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33(2), 147–149 (2008).
[Crossref] [PubMed]

Painter, O.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Petropoulos, P.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Reed, G. T.

K. Debnath, L. O’Faolain, F. Y. Gardes, A. G. Steffan, G. T. Reed, and T. F. Krauss, “Cascaded modulator architecture for WDM applications,” Opt. Express 20(25), 27420–27428 (2012).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Rey, I. H.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

Richardson, D. J.

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Rotenberg, N.

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Sakai, Y.

Schroeder, J.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

Shinkawa, M.

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Stankovic, S.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Steffan, A. G.

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Tan, D. T.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Toh, Y. T.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Torres-Company, V.

Vlasov, Y. A.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Vuckovic, J.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Wang, Q.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Wang, T.

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Wang, X.

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Welna, K.

White, T. P.

Xiong, C.

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Yerci, S.

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Zou, Y.

Appl. Phys. Lett. (2)

S. Minissale, S. Yerci, and L. Dal Negro, “Nonlinear optical properties of low temperature annealed silicon-rich oxide and silicon-rich nitride materials for silicon photonics,” Appl. Phys. Lett. 100(2), 021109 (2012).
[Crossref]

C. Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, and R. T. Chen, “Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide,” Appl. Phys. Lett. 97(18), 183302 (2010).
[Crossref]

Biosens. Bioelectron. (1)

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron. 27(1), 101–105 (2011).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications,” J. Phys. D Appl. Phys. 50(2), 025106 (2017).
[Crossref]

Laser Photonics Rev. (1)

T. Wang, T. D. K. Ng, S. K. Ng, Y. T. Toh, A. K. L. Chee, G. F. Chen, Q. Wang, and D. T. Tan, “Supercontinuum generation in bandgap engineered, back‐end CMOS compatible silicon rich nitride waveguides,” Laser Photonics Rev. 9(5), 498–506 (2015).
[Crossref]

Nanophotonics (1)

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3(4–5), 247–268 (2014).

Nat. Commun. (1)

C. Monat, C. Grillet, M. Collins, A. Clark, J. Schroeder, C. Xiong, J. Li, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Integrated optical auto-correlator based on third-harmonic generation in a silicon photonic crystal waveguide,” Nat. Commun. 5, 3246 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4(8), 535–544 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7(8), 597–607 (2013).
[Crossref]

B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3(4), 206–210 (2009).
[Crossref]

Nat. Phys. (1)

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (3)

D. M. Beggs, I. H. Rey, T. Kampfrath, N. Rotenberg, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay line based on indirect photonic transitions,” Phys. Rev. Lett. 108(21), 213901 (2012).
[Crossref] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref] [PubMed]

A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett. 108(3), 033602 (2012).
[Crossref] [PubMed]

Other (1)

C. Lacava, S. Stankovic, A. Khokhar, T. Dominguez, F. Gardes, D. J. Richardson, G. T. Reed, and P. Petropoulos, “CMOS-compatible silicon-rich nitride waveguides for ultrafast nonlinear signal processing,” in Proc. CLEO (2016), paper STu4Q–7.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Photonic band diagram of triangular 2D PhC structure of air holes in SRN film, with refractive index of 2.54 and air hole radius of 0.3a. The structure is shown in the inset with t = 300 nm. The PBG is shown in shaded region and the air light line is depicted using the dashed line. (b) Dispersion relation for a W1 and W0.7 slab waveguide shown in black and red respectively. The dashed line represents the air light line. By modifying the waveguide width transmission bandwidth can be increased from 20 nm to around 90 nm. The line defect waveguide structure is shown in inset.

Fig. 2
Fig. 2

The fabrication process flow of suspended PhC waveguide in SRN platform: (a) a 300 nm thick layer of SRN is deposited onto a bulk Si substrate using PECVD. (b) A 450 nm thick layer of ZEP 520A is spin coated onto the substrate, (c) Desired patterns were written on the resist using e-beam lithography, (d) patterns were transferred to the Si layer using ICP dry etching process, (e) SRN membrane is created by removing the exposed Si using TMAH solution with an etch depth of over 4 µm.

Fig. 3
Fig. 3

(a) Optical image of the fabricated waveguides, (b) SEM image of the fabricated device, showing a part of the PhC waveguide coupled to the access waveguide. A subwavelength grating waveguide was used to increase the mechanical stability of the access waveguide. (c) Zoomed in view of the PhC structure showing the circular holes. And (d) shows the surface roughness arising from deposition process.

Fig. 4
Fig. 4

Measured transmission spectra through 100 µm long PhC waveguides with lattice period a = 560 nm, 570 nm and 580 nm and air hole radius of 170 nm. The recorded transmission spectra are shown in light colors and the trends in the transmission, are highlighted using dark colors. Clear cut-offs corresponding to PBG with over 20 dB extinction ratio are visible.

Fig. 5
Fig. 5

W1 waveguide: (a) Gray and black curves show the measured transmission spectrum and the trend in transmission spectrum respectively for a 200 µm long waveguide with lattice period a = 580 nm. The transmission region is about 20 nm and highlighted by the dashed lines. (b) The calculated group index curve is shown in black and estimated group index values of the fabricated device is shown with green squares. The highest estimated group index is 110. The waveguide propagation loss is shown in red dots and the lowest propagation loss measured was 53 dB/cm for a group index of 37. W0.7 waveguide: (c) Gray and black curves show the measured transmission spectrum and the trend in transmission spectrum respectively for a 200 µm long waveguide with lattice period a = 580 nm. The transmission bandwidth is over 70 nm covering the entire laser tuning range. (d) The calculated group index curve is shown in black and estimated group index values of the fabricated device is shown with green squares. The highest estimated group index is 34. The waveguide propagation loss is shown in red dots and the lowest propagation loss measured was 4.6 dB/cm for a group index of 7.4.

Metrics