Abstract

During amplification in a noncollinear optical parametric amplifier the spatial and temporal coordinates of the amplified field are inherently coupled. These couplings or distortions can limit the peak intensity, among other things. In this work, a numerical study of the spatiotemporal distortions in BBO-based noncollinear optical parametric chirped-pulse amplifiers (NOPCPAs) is presented for a wide range of parameters and for different amplification conditions. It is shown that for Gaussian pump beams, gain saturation introduces strong distortions and high conversion efficiency always comes at the price of strong spatiotemporal couplings which drastically reduce the peak intensity even when pulse fronts of the pump and the signal are matched. However, high conversion efficiencies with minimum spatiotemporal distortions can still be achieved with flat-top pump beam profiles.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier

Audrius Zaukevičius, Vytautas Jukna, Roman Antipenkov, Vilija Martinėnaitė, Arūnas Varanavičius, Algis Petras Piskarskas, and Gintaras Valiulis
J. Opt. Soc. Am. B 28(12) 2902-2908 (2011)

Design of a highly stable, high-conversion-efficiency, optical parametric chirped-pulse amplification system with good beam quality

M. J. Guardalben, J. Keegan, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Puth, and J. D. Zuegel
Opt. Express 11(20) 2511-2524 (2003)

High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses

L. J. Waxer, V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel
Opt. Lett. 28(14) 1245-1247 (2003)

References

  • View by:
  • |
  • |
  • |

  1. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
    [Crossref]
  2. D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
    [Crossref]
  3. M. Baudisch, B. Wolter, M. Pullen, M. Hemmer, and J. Biegert, “High power multi-color OPCPA source with simultaneous femtosecond deep-UV to mid-IR outputs,” Opt. Lett. 41(15), 3583–3586 (2016).
    [Crossref] [PubMed]
  4. A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
    [Crossref]
  5. J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
    [Crossref] [PubMed]
  6. F. J. Furch, S. Birkner, F. Kelkensberg, A. Giree, A. Anderson, C. P. Schulz, and M. J. J. Vrakking, “Carrier-envelope phase stable few-cycle pulses at 400 kHz for electron-ion coincidence experiments,” Opt. Express 21(19), 22671–22682 (2013).
    [Crossref] [PubMed]
  7. S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
    [Crossref] [PubMed]
  8. M. Puppin, Y. Deng, O. Prochnow, J. Ahrens, T. Binhammer, U. Morgner, M. Krenz, M. Wolf, and R. Ernstorfer, “500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser,” Opt. Express 23(2), 1491–1497 (2015).
    [Crossref] [PubMed]
  9. M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
    [Crossref] [PubMed]
  10. H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
    [Crossref]
  11. J. Ahrens, O. Prochnow, T. Binhammer, T. Lang, B. Schulz, M. Frede, and U. Morgner, “Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier,” Opt. Express 24(8), 8074–8080 (2016).
    [Crossref] [PubMed]
  12. M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
    [Crossref]
  13. F. J. Furch, A. Giree, F. Morales, A. Anderson, Y. Wang, C. P. Schulz, and M. J. J. Vrakking, “Close to transform-limited, few-cycle 12 µJ pulses at 400 kHz for applications in ultrafast spectroscopy,” Opt. Express 24(17), 19293–19310 (2016).
    [Crossref] [PubMed]
  14. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
    [Crossref]
  15. I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 364–366 (1985).
    [Crossref]
  16. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [Crossref] [PubMed]
  17. J. Bromage, C. Dorrer, and J. D. Zuegel, “Angular-dispersion-induced spatiotemporal aberrations in noncollinear optical parametric amplifiers,” Opt. Lett. 35(13), 2251–2253 (2010).
    [Crossref] [PubMed]
  18. D. N. Schimpf, J. Rothhardt, J. Limpert, A. Tünnermann, and D. C. Hanna, “Theoretical analysis of the gain bandwidth for noncollinear parametric amplification of ultrafast pulses,” J. Opt. Soc. Am. B 24(11), 2837–2846 (2007).
    [Crossref]
  19. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. Piskarskas, and G. Valiulis, “Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier,” J. Opt. Soc. Am. B 28(12), 2902–2908 (2011).
    [Crossref]
  20. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
    [Crossref] [PubMed]
  21. O. Isaienko and E. Borguet, “Pulse-front matching of ultrabroadband near-infrared noncollinear optical parametric amplified pulses,” J. Opt. Soc. Am. B 26(5), 965–972 (2009).
    [Crossref]
  22. A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
    [Crossref] [PubMed]
  23. G. Arisholm, “General numerical methods for simulating second-order nonlinear interactions in birefringent media,” J. Opt. Soc. Am. B 14(10), 2543–2549 (1997).
    [Crossref]
  24. G. Arisholm, “Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,” J. Opt. Soc. Am. B 16(1), 117–127 (1999).
    [Crossref]
  25. P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
    [Crossref]
  26. G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
    [Crossref] [PubMed]
  27. O. Chalus, P. K. Bates, and J. Biegert, “Design and simulation of few-cycle optical parametric chirped pulse amplification at mid-IR wavelengths,” Opt. Express 16(26), 21297–21304 (2008).
    [Crossref] [PubMed]
  28. M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.,” Opt. Express 22(7), 8556–8564 (2014).
    [Crossref] [PubMed]
  29. Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
    [Crossref]
  30. X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4–6), 599–604 (2004).
    [Crossref]
  31. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
    [Crossref] [PubMed]
  32. J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
    [Crossref] [PubMed]
  33. T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
    [Crossref]
  34. V. Bagnoud, I. A. Begishev, M. J. Guardalben, J. Puth, and J. D. Zuegel, “5 Hz, > 250 mJ optical parametric chirped-pulse amplifier at 1053 nm,” Opt. Lett. 30(14), 1843–1845 (2005).
    [Crossref] [PubMed]

2016 (3)

2015 (4)

2014 (1)

2013 (2)

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
[Crossref]

F. J. Furch, S. Birkner, F. Kelkensberg, A. Giree, A. Anderson, C. P. Schulz, and M. J. J. Vrakking, “Carrier-envelope phase stable few-cycle pulses at 400 kHz for electron-ion coincidence experiments,” Opt. Express 21(19), 22671–22682 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

2010 (3)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Bromage, C. Dorrer, and J. D. Zuegel, “Angular-dispersion-induced spatiotemporal aberrations in noncollinear optical parametric amplifiers,” Opt. Lett. 35(13), 2251–2253 (2010).
[Crossref] [PubMed]

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

2005 (2)

2004 (4)

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
[Crossref]

G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
[Crossref] [PubMed]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4–6), 599–604 (2004).
[Crossref]

S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
[Crossref] [PubMed]

2002 (1)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

2000 (1)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

1999 (1)

1998 (1)

1997 (1)

1995 (1)

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

1985 (2)

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 364–366 (1985).
[Crossref]

Ahrens, J.

Akturk, S.

Anderson, A.

Andreoni, A.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Antipenkov, R.

Arisholm, G.

Bach, F.

Bagnoud, V.

Baltuska, A.

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

Banfi, G. P.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Bates, P. K.

Baudisch, M.

Begishev, I. A.

Bessing, R.

Beutter, M.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Bieger, J.

Biegert, J.

Binhammer, T.

Birkner, S.

Bonora, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Bor, Z.

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

Borguet, E.

Bowlan, P.

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

Brida, D.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Bromage, J.

Butkus, R.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Cerullo, G.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Chalus, O.

Chipperfield, L.

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
[Crossref]

Christov, I. P.

I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 364–366 (1985).
[Crossref]

Cirmi, G.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Danielius, R.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

De Silvestri, S.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Demmler, S.

Deng, Y.

Dorrer, C.

Dubietis, A.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Ernstorfer, R.

Faatz, B.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Foggi, P.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Fonnum, H.

Frede, M.

Furch, F. J.

Gabolde, P.

Geng, X. T.

Giree, A.

Gu, X.

Guardalben, M. J.

Haakestad, M. W.

Hädrich, S.

Haefner, M.

Hage, A.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Hanna, D. C.

Hauri, C. P.

G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
[Crossref] [PubMed]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
[Crossref]

Hemmer, M.

Höppner, H.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Isaienko, O.

Jocher, C.

Jukna, V.

Kelkensberg, F.

Keller, U.

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
[Crossref]

G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
[Crossref] [PubMed]

Kim, D. E.

Kim, S.

Kobayashi, T.

Krebs, M.

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
[Crossref]

Krenz, M.

Lang, T.

Lee, Y.

Limpert, J.

Lippert, E.

Lochbrunner, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Manzoni, C.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Marangoni, M.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Martinenaite, V.

Mero, M.

Metzger, T.

Michel, K.

Monguzzi, M.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Morales, F.

Morgner, U.

Noack, F.

Petrov, V.

Piel, J.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Piskarskas, A.

A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. Piskarskas, and G. Valiulis, “Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier,” J. Opt. Soc. Am. B 28(12), 2902–2908 (2011).
[Crossref]

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Piskarskas, A. P.

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

Prandolini, M. J.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Prinz, S.

Prochnow, O.

Pullen, M.

Puppin, M.

Puth, J.

Racz, B.

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

Riedel, R.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Riedle, E.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Rothhardt, J.

Sakane, I.

Schenkl, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Schimpf, D. N.

Schlup, P.

G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
[Crossref] [PubMed]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
[Crossref]

Schultze, M.

Schulz, B.

Schulz, C. P.

Schulz, M.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Shirakawa, A.

Solcia, C.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Sozzi, C.

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Spörlein, S.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Tanikawa, T.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Tavella, F.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Teisset, C. Y.

Teubner, U.

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Trebino, R.

Tünnermann, A.

Valiulis, G.

Varanavicius, A.

Villoresi, P.

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

Vrakking, M. J. J.

Wang, Y.

Wolf, M.

Wolter, B.

Zaïr, A.

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
[Crossref]

Zaukevicius, A.

Zeek, E.

Zinth, W.

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

Zuegel, J. D.

Appl. Phys. B (2)

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Spörlein, and W. Zinth, “Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,” Appl. Phys. B 71(3), 457–465 (2000).
[Crossref]

P. Schlup, J. Biegert, C. P. Hauri, G. Arisholm, and U. Keller, “Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,” Appl. Phys. B 79(3), 285–288 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Dubietis, R. Butkus, and A. P. Piskarskas, “Trends in chirped pulse optical parametric amplification,” IEEE J. Sel. Top. Quantum Electron. 12(2), 163–172 (2006).
[Crossref]

J. Opt. (2)

D. Brida, C. Manzoni, G. Cirmi, M. Marangoni, S. Bonora, P. Villoresi, S. De Silvestri, and G. Cerullo, “Few-optical-cycle pulses tunable from the visible to the mid-infrared by optical parametric amplifiers,” J. Opt. 12(1), 013001 (2010).
[Crossref]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (5)

Meas. Sci. Technol. (1)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

Nat. Photonics (1)

M. Krebs, S. Hädrich, S. Demmler, J. Rothhardt, A. Zaïr, L. Chipperfield, J. Limpert, and A. Tünnermann, “Towards isolated attosecond pulses at megahertz repetition rates,” Nat. Photonics 7(7), 555–559 (2013).
[Crossref]

New J. Phys. (1)

H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella, “An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers,” New J. Phys. 17(5), 053020 (2015).
[Crossref]

Opt. Commun. (3)

I. P. Christov, “Propagation of femtosecond light pulses,” Opt. Commun. 53(6), 364–366 (1985).
[Crossref]

Z. Bor and B. Racz, “Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,” Opt. Commun. 54(3), 165–170 (1985).
[Crossref]

X. Gu, S. Akturk, and R. Trebino, “Spatial chirp in ultrafast optics,” Opt. Commun. 242(4–6), 599–604 (2004).
[Crossref]

Opt. Express (13)

O. Chalus, P. K. Bates, and J. Biegert, “Design and simulation of few-cycle optical parametric chirped pulse amplification at mid-IR wavelengths,” Opt. Express 16(26), 21297–21304 (2008).
[Crossref] [PubMed]

G. Arisholm, J. Bieger, P. Schlup, C. P. Hauri, and U. Keller, “Ultra-broadband chirped-pulse optical parametric amplifier with angularly dispersed beams,” Opt. Express 12(3), 518–530 (2004).
[Crossref] [PubMed]

S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12(19), 4399–4410 (2004).
[Crossref] [PubMed]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[Crossref] [PubMed]

J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zuegel, “Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers,” Opt. Express 19(18), 16797–16808 (2011).
[Crossref] [PubMed]

F. J. Furch, A. Giree, F. Morales, A. Anderson, Y. Wang, C. P. Schulz, and M. J. J. Vrakking, “Close to transform-limited, few-cycle 12 µJ pulses at 400 kHz for applications in ultrafast spectroscopy,” Opt. Express 24(17), 19293–19310 (2016).
[Crossref] [PubMed]

J. Rothhardt, S. Demmler, S. Hädrich, J. Limpert, and A. Tünnermann, “Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate,” Opt. Express 20(10), 10870–10878 (2012).
[Crossref] [PubMed]

F. J. Furch, S. Birkner, F. Kelkensberg, A. Giree, A. Anderson, C. P. Schulz, and M. J. J. Vrakking, “Carrier-envelope phase stable few-cycle pulses at 400 kHz for electron-ion coincidence experiments,” Opt. Express 21(19), 22671–22682 (2013).
[Crossref] [PubMed]

M. W. Haakestad, H. Fonnum, and E. Lippert, “Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2.,” Opt. Express 22(7), 8556–8564 (2014).
[Crossref] [PubMed]

S. Prinz, M. Haefner, C. Y. Teisset, R. Bessing, K. Michel, Y. Lee, X. T. Geng, S. Kim, D. E. Kim, T. Metzger, and M. Schultze, “CEP-stable, sub-6 fs, 300-kHz OPCPA system with more than 15 W of average power,” Opt. Express 23(2), 1388–1394 (2015).
[Crossref] [PubMed]

M. Puppin, Y. Deng, O. Prochnow, J. Ahrens, T. Binhammer, U. Morgner, M. Krenz, M. Wolf, and R. Ernstorfer, “500 kHz OPCPA delivering tunable sub-20 fs pulses with 15 W average power based on an all-ytterbium laser,” Opt. Express 23(2), 1491–1497 (2015).
[Crossref] [PubMed]

M. Mero, F. Noack, F. Bach, V. Petrov, and M. J. J. Vrakking, “High-average-power, 50-fs parametric amplifier front-end at 1.55 μm,” Opt. Express 23(26), 33157–33163 (2015).
[Crossref] [PubMed]

J. Ahrens, O. Prochnow, T. Binhammer, T. Lang, B. Schulz, M. Frede, and U. Morgner, “Multipass OPCPA system at 100 kHz pumped by a CPA-free solid-state amplifier,” Opt. Express 24(8), 8074–8080 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, C. Sozzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51(4), 3164–3168 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Illustration of type-I phase matching geometries in a BBO crystal: (a) walk-off compensating (WOC) geometry and (b) non-walk-off compensating (NWOC) geometry. X, Y, Z: crystal axes of the BBO crystal; x, y, z: Cartesian co-ordinate system used in the calculations; ks: signal wave vector that is incident perpendicularly to the crystal face, kp: pump wave vector at an internal angle α with the signal wave vector and at the phase-matching angle θ with the optical axis (Z), and Sp: Poynting vector of the pump. All the vectors that relate to the laser propagation lie in the (Y, Z) or (x, z) plane. Not to scale.

Fig. 2
Fig. 2

Intensity profiles of the output signal from an unsaturated NOPCPA in different domains: (a) y-x (b) t-y (c) f-y (d) t-x (e) f-x, and (f) f-kx for an input beam waist of 500 µm (half width at 1/e2 of peak intensity). The green lines are there to guide the eye. The output energy of the signal is 15.1 µJ (gain = 1800).

Fig. 3
Fig. 3

Variation of spatiotemporal distortions with noncollinear angle in the walk-off compensating (WOC) geometry for an unsaturated NOPCPA, for various beam waist values (c. f. Legend): (a) pulse front tilt before compression and (b) pulse front tilt after compression; (c) spatial chirp and (d) angular dispersion-induced pulse front tilt. At the magic angle (2.5°) both the pulse front tilt and the angular dispersion are zero after compression.

Fig. 4
Fig. 4

Variation of spatiotemporal distortions with noncollinear angle in the non-walk-off compensating (NWOC) geometry for an unsaturated NOPCPA, for various beam waist values (cf. Legend): (a) pulse front tilt before compression and (b) pulse front tilt after compression; (c) spatial chirp and (d) angular dispersion-induced pulse front tilt. At the magic angle (2.5°) both the pulse front tilt and the angular dispersion are zero after compression. Away from the magic angle, the pulse front tilt and the angular dispersion increase more rapidly than in the WOC case [see Fig. 3].

Fig. 5
Fig. 5

Impact of pulse-front matching on linear distortions in an unsaturated NOPCPA in non-walk-off compensating (NWOC) geometry for various beam waist values (c. f. Legend): (a) pulse front tilt before compression and (b) pulse front tilt after compression; (c) spatial chirp and (d) angular dispersion-induced pulse front tilt, after pulse-front matching of the pump and the signal.

Fig. 6
Fig. 6

The impact of gain saturation on spatiotemporal distortions in the walk-off compensating (WOC) and non-walk-off compensating (NWOC) configurations: (a) when the pump intensity is increased for a crystal length of 3 mm, and (b) when crystal length is increased keeping the peak pump intensity constant at 100 GW/cm2. The conversion efficiency is shown on the left (solid blue circles for the WOC configuration and solid red squares for the NWOC configuration), revealing gain saturation for higher pump intensities (a) and longer crystal lengths (b). The accompanying Strehl ratios are shown on the right (open blue circles for the WOC configuration and open red squares for the NWOC configuration), revealing that the onset of gain saturation is accompanied by a significant reduction in the Strehl ratio. ‘SR’ and ‘eff’ refer to the Strehl ratio and the conversion efficiency respectively. Parts (c, d) illustrate the 3D spatiotemporal distribution after compression and focusing for crystal lengths of 1.8 mm (c) and 2.8 mm (d), both in NWOC configuration and for a pump intensity of 100 GW/cm2.

Fig. 7
Fig. 7

Spatio-spectral profiles in the walk-off plane for three different conversion efficiencies corresponding to the crystal lengths (L) of 1.4 mm, 1.8 mm and 2.8 mm [see Fig. 6(b)] in the NWOC (a) and WOC (b) phase-matching configuration.

Fig. 8
Fig. 8

Spectral and temporal characterization of the amplified signal beam, for a crystal length of 1.8 mm, and a pump intensity of 100 GW/cm2 [a conversion efficiency over 15%, see Fig. 6(b)]: (a) Spectrum and spectral phase in the case of the NWOC and (b) the WOC configuration, (c, d) Temporal profiles corresponding to the spectrum at the center of the beam profile and the residual spectral phase (along with the Fourier transform-limited pulse) as well as the near field beam profile in the inset for (c) the NWOC and (d) the WOC configuration. The spectral phases in (a) and (b) correspond to higher-order dispersion terms, where the group delay dispersion has been removed.

Fig. 9
Fig. 9

Impact of gain saturation on conversion efficiency and Strehl ratio for three different seed spectra in the case of (a) WOC and (b) NWOC configuration. The inset shows a seed spectrum with 90% modulation depth. ‘SR’ and ‘eff’ refer to Strehl ratio and conversion efficiency, while ‘Gauss_seed’, ‘mod50_seed’ and ‘mod90_seed’ refer to the seed spectra without modulation, with 50% and 90% modulation depth respectively.

Fig. 10
Fig. 10

Impact of gain saturation on conversion efficiency and Strehl ratio in the case of Gaussian and supergaussian pump beam of order 10 with a peak intensity of 100 GW/cm2 in the (a) WOC configuration and (b) NWOC configuration. The inset shows a supergaussian pump beam profile. ‘SR’ and ‘eff’ refer to Strehl ratio and conversion efficiency, while ‘Gauss_pump’ and ‘Supergauss_pump’ refer to the Gaussian and supergaussian pump beam profile respectively.

Fig. 11
Fig. 11

Investigation of the impact of distortions from an unsaturated first amplification stage on the amplification and the output characteristics in a second stage: (a) gain of the first stage as a function of the crystal length, for a pump intensity of 45 GW/cm2; the inset shows the time-position profile of the output signal; (b) evolution of the Strehl ratio and the conversion efficiency in the second stage, for three input signal conditions (seed1a, seed1b and seed1b-PFM) in the WOC configuration and (c) in the NWOC configuration. The three input conditions for the second stage are given in the main text. ‘SR’, ‘eff’ and ‘PFM’ refer to the Strehl ratio, pump-to-signal energy conversion efficiency and pulse-front matching.

Fig. 12
Fig. 12

(a) Evolution of gain with the crystal length in the saturated first stage; inset: time-position profile of the signal at the output of the 2.5 mm long crystal; (b) evolution of the Strehl ratio and the conversion efficiency of the output of the second stage in the WOC and NWOC configurations when the second stage is seeded with a distorted signal.

Tables (1)

Tables Icon

Table 1 Parameters for two-stage NOPCPA simulations

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

tanγ = c ( d t 0 dx ) x 0 ,
tan γ 0 =c ( d k x0 dω ) ω 0 = λ 0 ( dε dλ ) λ 0 ,
( d t 0 dx ) x 0 = ( d k x0 dω ) ω 0 + ( d 2 φ d ω 2 ) ω 0 ( d ω 0 dx ) x 0 ,
SR= I I 0 ,
E df (x',y',ω')=β ω | E(x',y',ω) | x,y | E(x,y,ω') | ,
φ(ω)=φ( x max , y max ,ω) φ f (ω),
φ f (ω)= a 0 + a 1 ω+ a 2 ω 2 ,

Metrics