Abstract

The ability of nanowaveguides to confine and guide light has been applied for developing optical applications such as nanolasers, optical switching and localized imaging. These and others applications can be further complemented by the optical control of the guided modes within the nanowaveguide, which in turn dictates the light emission pattern. It has been shown that the light directionality can be shaped by varying the nanowire cross-sections. Here, we demonstrate that the directionality of the light can be modified using a single nanowaveguide with a nonlinear phenomenon such as second-harmonic generation. In individual lithium niobate nanowaveguides, we use second-harmonic modal phase-matching and we apply it to switch the guided modes within its sub-micron cross-section. In doing so, we can vary the light directionality of the generated light from straight (0° with respect to the propagation direction) to large spread angles (almost 54°). Further, we characterize the directionality of the guided light by means of optical Fourier transformation and show that the directionality of the guided light changes for different wavelengths.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation

Anton Sergeyev, Reinhard Geiss, Alexander S. Solntsev, Andrea Steinbrück, Frank Schrempel, Ernst-Bernhard Kley, Thomas Pertsch, and Rachel Grange
Opt. Express 21(16) 19012-19021 (2013)

Directional second-harmonic generation controlled by sub-wavelength facets of an organic mesowire

Deepak K. Sharma, Shailendra K. Chaubey, Adarsh B. Vasista, Jesil Jose Karumancheril, Ravi P. N. Tripathi, Alexandre Bouhelier, and G. V. Pavan Kumar
Appl. Opt. 57(21) 5914-5922 (2018)

Spectral response of an upconversion detector and spectrometer

Paulina S. Kuo, Oliver Slattery, Yong-Su Kim, Jason S. Pelc, M. M. Fejer, and Xiao Tang
Opt. Express 21(19) 22523-22531 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Ditlbacher, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Spectrally coded optical data storage by metal nanoparticles,” Opt. Lett. 25(8), 563–565 (2000).
    [Crossref] [PubMed]
  2. E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
    [Crossref] [PubMed]
  3. D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
    [Crossref] [PubMed]
  4. F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
    [Crossref]
  5. B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
    [Crossref]
  6. R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
    [Crossref]
  7. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
    [Crossref] [PubMed]
  8. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
    [Crossref] [PubMed]
  9. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
    [Crossref] [PubMed]
  10. R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
    [Crossref] [PubMed]
  11. D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
    [Crossref] [PubMed]
  12. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  13. A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
    [Crossref]
  14. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
    [Crossref] [PubMed]
  15. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
    [Crossref] [PubMed]
  16. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
    [Crossref]
  17. C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
    [Crossref] [PubMed]
  18. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
    [Crossref] [PubMed]
  19. M. Soljacić, C. Luo, J. D. Joannopoulos, and S. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28(8), 637–639 (2003).
    [Crossref] [PubMed]
  20. R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
  21. F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
    [Crossref] [PubMed]
  22. A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
    [Crossref] [PubMed]
  23. S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
    [Crossref]
  24. M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
    [Crossref]
  25. J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
    [Crossref]
  26. C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
    [Crossref] [PubMed]
  27. E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
    [Crossref]
  28. R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
    [Crossref] [PubMed]
  29. E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).
  30. E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
    [Crossref] [PubMed]
  31. A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
    [Crossref]
  32. J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
    [Crossref] [PubMed]
  33. R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
    [Crossref] [PubMed]
  34. T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
    [Crossref] [PubMed]
  35. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).
  36. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).
  37. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
    [Crossref] [PubMed]
  38. D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
    [Crossref]
  39. B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
    [Crossref]
  40. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).
  41. R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A. 37(4), 191–203 (1985).
    [Crossref]
  42. N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M. P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23(11), 13983–13990 (2015).
    [Crossref] [PubMed]
  43. R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
    [Crossref] [PubMed]
  44. A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
    [Crossref]
  45. A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
    [Crossref]
  46. A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
    [Crossref]

2017 (2)

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
[Crossref]

2016 (5)

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

2015 (4)

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

N. Courjal, F. Devaux, A. Gerthoffer, C. Guyot, F. Henrot, A. Ndao, and M. P. Bernal, “Low-loss LiNbO3 tapered-ridge waveguides made by optical-grade dicing,” Opt. Express 23(11), 13983–13990 (2015).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

2014 (1)

R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

2013 (2)

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

2012 (5)

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

D. Palima, A. R. Bañas, G. Vizsnyiczai, L. Kelemen, P. Ormos, and J. Glückstad, “Wave-guided optical waveguides,” Opt. Express 20(3), 2004–2014 (2012).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

2011 (7)

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

2010 (1)

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

2009 (1)

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

2008 (1)

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

2007 (3)

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

2006 (3)

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14(10), 4357–4362 (2006).
[Crossref] [PubMed]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

2005 (3)

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

2004 (2)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).

2003 (1)

2002 (1)

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

2000 (1)

1985 (1)

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A. 37(4), 191–203 (1985).
[Crossref]

Abujetas, D. R.

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

Adam, A. J. L.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Agarwal, R.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Almeida, R.

R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).

Anand, S.

R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

Aussenegg, F. R.

Baghban, M. A.

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Bakkers, E. P. A. M.

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

Bañas, A. R.

Bao, K.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Barrelet, C. J.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Barrios, C. A.

R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Bernal, M. P.

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).

Boer-Duchemin, E.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

Bonacina, L.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).

Brenny, B. J. M.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

Brinkley, S.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Buscaglia, M. T.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

Buscaglia, V.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

Buschlinger, R.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Cai, W.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

Cao, B.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

Chang-Hasnain, C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Chen, R.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Cho, C. H.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Choi, Y.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Chuang, L. C.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Ciepielewski, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Clarke, G.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Comtet, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

Courjal, N.

Crankshaw, S.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

David, A.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

De Visser, P. J.

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

DenBaars, S.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Denz, C.

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

Devaux, F.

Ditlbacher, H.

Duan, G.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

Dujardin, G.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

Dutto, F.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

Ee, H. S.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Extermann, J.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Fan, S.

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Foster, M. A.

Gaeta, A. L.

Galez, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Gallo, K.

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Gao, J. R.

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Gaylord, T.

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A. 37(4), 191–203 (1985).
[Crossref]

Geiss, R.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Gerber-Lemaire, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Gerrmann, M.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Gerthoffer, A.

Glückstad, J.

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

Gomez Rivas, J.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

Gómez Rivas, J.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Grange, R.

A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
[Crossref]

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

Greytak, A. B.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Guyot, C.

Hadji, R.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Hartung, H.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

Haverkort, J. E. M.

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

Hendricks, N.

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

Henrot, F.

Heo, C. J.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Hessman, D.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Hovenier, J. N.

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Hu, Q.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Hu, Y. L.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Iliew, R.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Imbrock, J.

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

Joannopoulos, J. D.

Johansson, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Joulaud, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Juillerat-Jeanneret, L.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Käll, M.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Kasalynas, I.

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Kasparian, C.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Kelchner, K. M.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Kelemen, L.

Kim, E.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Kivshar, Y. S.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Klaassen, T. O.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Klapwijk, T. M.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Kley, E. B.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

Knutsen, K.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

Konjhodzic, D.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Kroesen, S.

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

Kumar, S.

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Kwon, S. H.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Lamprecht, B.

Larsson, C.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Law, M.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

Le Dantec, R.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Lee, L. P.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Leitner, A.

Li, Y.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Lieber, C. M.

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

Liphardt, J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Lipson, M.

Long, J. P.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

Luo, C.

Magouroux, T.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Manolatou, C.

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Marlow, F.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Mårtensson, T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Maslov, A. V.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

Matioli, E.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Mazur, E.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Megens, M. M.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Miljkovic, V. D.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Moewe, M.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Mugnier, Y.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Müller, S.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Nakamura, S.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Nakayama, Y.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Ndao, A.

Neshev, D. N.

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Ning, C. Z.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

Nordlander, P.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).

Ohlsson, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Onorato, R. M.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Orlova, E. E.

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

Ormos, P.

Oulton, R. F.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Palima, D.

Paniagua-Domínguez, R.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Park, H. G.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Park, J. H.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Passemard, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Pauzauskie, P.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

Pauzauskie, P. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Pehrsson, P. E.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

Pertsch, T.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Peschel, U.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Petersen, P. B.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Piccione, B.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Polman, A.

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

Radenovic, A.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Raillon, C.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

Rask, M.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Reig Escalé, M.

A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
[Crossref]

Reno, J. L.

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Riediger, M.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Röder, R.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Ronning, C.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Rowenhorst, D. J.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Rytz, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Samuelson, L.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Sanatinia, R.

R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

Sanchez-Gil, J. A.

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

Sánchez-Gil, J. A.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Saykally, R. J.

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Schaller, R. D.

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

Schenk, K.

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

Schmidt, B. S.

Schrempel, F.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

Schwung, S.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Sergeyev, A.

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
[Crossref]

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

Sharping, J. E.

Shegai, T.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Sidiropoulos, T. P. H.

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

Simpkins, B. S.

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

Sirbuly, D. J.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

Soljacic, M.

Solntsev, A. S.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Speck, J.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Staedler, D.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Steinbrück, A.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. Steinbrück, F. Schrempel, E. B. Kley, T. Pertsch, and R. Grange, “Second-harmonic generation in lithium niobate nanowires for local fluorescence excitation,” Opt. Express 21(16), 19012–19021 (2013).
[Crossref] [PubMed]

Sukhorukov, A. A.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

Svacha, G. T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Svensson, C. P. T.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Swillo, M.

R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

Tekce, K.

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

Timpu, F.

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

Trägårdh, J.

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Tran, T.

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

Tünnermann, A.

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

Turner, A. C.

van Dam, D.

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

van Vugt, L. K.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

Vilson, R. R. P.

R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).

Vizsnyiczai, G.

Voss, T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Wang, T.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Weis, R.

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A. 37(4), 191–203 (1985).
[Crossref]

Weisbuch, C.

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Wierer, J. J.

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Williams, B. S.

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

Wolf, J. P.

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Xu, H.

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

Yan, H.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yan, R.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Yang, P.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, S. M.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Yu, D.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

Zhang, Y.

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

Zhao, Q.

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

ACS Nano (2)

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter,” ACS Nano 7(6), 5343–5349 (2013).
[Crossref] [PubMed]

D. Staedler, T. Magouroux, R. Hadji, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann, R. Le Dantec, Y. Mugnier, D. Rytz, D. Ciepielewski, C. Galez, S. Gerber-Lemaire, L. Juillerat-Jeanneret, L. Bonacina, and J. P. Wolf, “Harmonic nanocrystals for biolabeling: A survey of optical properties and biocompatibility,” ACS Nano 6(3), 2542–2549 (2012).
[Crossref] [PubMed]

ACS Photonics (3)

F. Timpu, A. Sergeyev, N. Hendricks, and R. Grange, “Second-Harmonic Enhancement with Mie Resonances in Perovskite Nanoparticles,” ACS Photonics 4(1), 76–84 (2017).
[Crossref]

B. J. M. Brenny, D. R. Abujetas, D. Van Dam, J. A. Sanchez-Gil, J. Gomez Rivas, and A. Polman, “Directional emission from leaky and guided modes in GaAs nanowires measured by cathodoluminescence,” ACS Photonics 3(4), 677–684 (2016).
[Crossref]

A. Sergeyev, R. Geiss, A. S. Solntsev, A. A. Sukhorukov, F. Schrempel, T. Pertsch, and R. Grange, “Enhancing Guided Second-Harmonic Light in Lithium Niobate Nanowires,” ACS Photonics 2(6), 687–691 (2015).
[Crossref]

APL Photonics (1)

M. A. Baghban and K. Gallo, “Impact of longitudinal fields on second harmonic generation in lithium niobate nanopillars,” APL Photonics 1(6), 061302 (2016).
[Crossref]

Appl. Phys. Lett. (6)

S. Kroesen, K. Tekce, J. Imbrock, and C. Denz, “Monolithic fabrication of quasi phase-matched waveguides by femtosecond laser structuring the χ(2) nonlinearity,” Appl. Phys. Lett. 107(10), 101109 (2015).
[Crossref]

A. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, J. R. Gao, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions,” Appl. Phys. Lett. 88(15), 151105 (2006).
[Crossref]

R. Chen, S. Crankshaw, T. Tran, L. C. Chuang, M. Moewe, and C. Chang-Hasnain, “Second-harmonic generation from a single wurtzite GaAs nanoneedle,” Appl. Phys. Lett. 96(5), 051110 (2010).
[Crossref]

A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87(15), 151103 (2005).
[Crossref]

A. S. Solntsev, A. A. Sukhorukov, D. N. Neshev, R. Iliew, R. Geiss, T. Pertsch, and Y. S. Kivshar, “Cascaded third harmonic generation in lithium niobate nanowaveguides,” Appl. Phys. Lett. 98(23), 231110 (2011).
[Crossref]

D. van Dam, D. R. Abujetas, J. A. Sanchez-Gil, J. E. M. Haverkort, E. P. A. M. Bakkers, and J. Gomez Rivas, “Strong diameter-dependence of nanowire emission coupled to waveguide modes,” Appl. Phys. Lett. 108(12), 121109 (2016).
[Crossref]

Appl. Phys., A. (1)

R. Weis and T. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure,” Appl. Phys., A. 37(4), 191–203 (1985).
[Crossref]

J. Phys. D Appl. Phys. (1)

A. Sergeyev, M. Reig Escalé, and R. Grange, “Generation and tunable enhancement of a sum-frequency signal in lithium niobate nanowires,” J. Phys. D Appl. Phys. 50(4), 044002 (2017).
[Crossref]

Light Sci. Appl. (1)

E. Matioli, S. Brinkley, K. M. Kelchner, Y. L. Hu, S. Nakamura, S. DenBaars, J. Speck, and C. Weisbuch, “High-brightness polarized light-emitting diodes,” Light Sci. Appl. 1(8), 22 (2012).
[Crossref]

Nano Lett. (9)

R. Röder, T. P. H. Sidiropoulos, R. Buschlinger, M. Riediger, U. Peschel, R. F. Oulton, and C. Ronning, “Mode switching and filtering in nanowire lasers,” Nano Lett. 16(4), 2878–2884 (2016).
[Crossref] [PubMed]

J. P. Long, B. S. Simpkins, D. J. Rowenhorst, and P. E. Pehrsson, “Far-field imaging of optical second-harmonic generation in single GaN nanowires,” Nano Lett. 7(3), 831–836 (2007).
[Crossref] [PubMed]

R. Sanatinia, S. Anand, and M. Swillo, “Modal engineering of second-harmonic generation in single GaP nanopillars,” Nano Lett. 14(9), 5376–5381 (2014).
[Crossref] [PubMed]

T. Shegai, V. D. Miljković, K. Bao, H. Xu, P. Nordlander, P. Johansson, and M. Käll, “Unidirectional broadband light emission from supported plasmonic nanowires,” Nano Lett. 11(2), 706–711 (2011).
[Crossref] [PubMed]

F. Dutto, C. Raillon, K. Schenk, and A. Radenovic, “Nonlinear optical response in single alkaline niobate nanowires,” Nano Lett. 11(6), 2517–2521 (2011).
[Crossref] [PubMed]

J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2(4), 279–283 (2002).
[Crossref]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref] [PubMed]

Nanotechnology (4)

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnology 22(17), 175201 (2011).

R. Geiss, A. Sergeyev, H. Hartung, A. S. Solntsev, A. A. Sukhorukov, R. Grange, F. Schrempel, E. B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width,” Nanotechnology 27(6), 065301 (2016).
[Crossref] [PubMed]

B. Cao, W. Cai, G. Duan, Y. Li, Q. Zhao, and D. Yu, “A template-free electrochemical deposition route to ZnO nanoneedle arrays and their optical and field emission properties,” Nanotechnology 16(11), 2567–2574 (2005).
[Crossref]

C. P. T. Svensson, T. Mårtensson, J. Trägårdh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, and J. Ohlsson, “Monolithic GaAs/InGaP nanowire light emitting diodes on silicon,” Nanotechnology 19(30), 305201 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol. 7(10), 640–645 (2012).
[Crossref] [PubMed]

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. J. Wierer, A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nat. Photonics 3(3), 163–169 (2009).
[Crossref]

Nature (2)

R. R. P. Vilson, R. Almeida, C. A. Barrios, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447(7148), 1098–1101 (2007).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A. (1)

E. E. Orlova, J. N. Hovenier, P. J. De Visser, and J. R. Gao, “Image beam from a wire laser,” Phys. Rev. A. 91(5), 1–5 (2015).

Phys. Rev. Lett. (2)

E. E. Orlova, J. N. Hovenier, T. O. Klaassen, I. Kasalynas, A. J. L. Adam, J. R. Gao, T. M. Klapwijk, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Antenna Model for Wire Lasers,” Phys. Rev. Lett. 96(17), 173904 (2006).
[Crossref] [PubMed]

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical Excitation of Surface Plasmons,” Phys. Rev. Lett. 106(22), 226802 (2011).

Proc. Natl. Acad. Sci. U.S.A. (1)

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005).
[Crossref] [PubMed]

Science (2)

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[Crossref] [PubMed]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) SEM image of the entire LiNbO3 NW half-suspended in air. (b) SEM image of the NW output facet with the corresponding crystal structure. The rectangular NW cross-section has 626 ± 31 nm in width and 664 ± 50 nm in height.
Fig. 2
Fig. 2 (a) Schematic of the experimental setup for the optical Fourier transformation technique measurements, which includes a control part for the pump beam and an imaging part for the SH detection (both real and spatial spectrum images). (b) The real image of the output facet is obtained with the Image Camera. (c) The spatial spectrum image is obtained with the Fourier camera, which collects the SH light emitted under 53.13° (graph with radial steps of 10°). Inset: Basic principles of the optical Fourier transformation technique in NWs. See the full description in the text.
Fig. 3
Fig. 3 (a) SH nonlinear spectrum for a LiNbO3 NW with a non-rectangular cross-section. The NW width is 573 ± 10 nm and the height varies from 522 ± 15 nm to 745 ± 21 nm . It contains two PM peaks. The nonlinear light distributions of the NW at different wavelengths were taken. (b), (c), (d), (e), (f) are the spatial spectra at the wavelengths λFH = {831, 862, 893, 924, 955} nm, respectively. The intensity of all the spatial spectra are normalized with respect to the maximal signal, at λFH = 924 nm. The light is better confined at the PM peak because the signal-to-noise ratio is the highest among all Fourier images. Also, different light distribution are obtained at the two PM peaks.
Fig. 4
Fig. 4 (a) Measured SH and semi-analytical simulation of the phase-matching response of the LiNbO3 NW in the upper VIS-NIR range spectrum, normalized with respect to the maximum conversion efficiency. (b) Enhancement of the phase-matched modes at the pump wavelengths of 906 and 946 nm.
Fig. 5
Fig. 5 Second-harmonic mode profiles of the phase-matched modes [left graphs, (a) and (d)] and their theoretical [middle graphs, (b) and (e)] and experimental [right graphs, (c) and (f)] spatial spectra. In all spectra, the red circles represent the experimental collection range (up to 53.13°), whereas the green circles are the simulation domain limits (up to 80°). Each white circular dashed line represents 10°, whereas the straight lines represent the azimuthal angle at 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°.
Fig. 6
Fig. 6 Simulated spatial spectra of the out-coupled SH guided modes at the SH wavelength 473 nm (FH wavelength 946 nm) for a LiNbO3 nanowaveguide with a rectangular cross-section with 660 nm in height and 615 nm in width. The displayed modes are the (a) quasi-TE00, (b) quasi-TE01, (c) quasi-TE10, (d) quasi-TE02, (e) quasi-TE11 and the (f) quasi-TE30 modes, respectively. The red circle represents the angular limit of the experimental setup, 53.13°. At this particular wavelength, the quasi-TE30 mode is the highest order mode that is distinguishable in our experimental setup.

Metrics