Abstract

We introduce a sample cell that can be used for pressure-dependent terahertz time-domain spectroscopy. Compared with traditional far-IR spectroscopy with a diamond anvil cell, the larger aperture permits measurements down to much lower frequencies as low as 3.3 cm−1 (0.1 THz), giving access to new spectroscopic results. The pressure tuning range reaches up to 34.4 MPa, while the temperature range is from 100 to 473 K. With this large range of tuning parameters, we are able to map out phase diagrams of materials based on their THz spectrum, as well as to track the changing of the THz spectrum within a single phase as a function of temperature and pressure. Pressure-dependent THz-TDS results for nitrogen and R-camphor are shown as an example.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz time-domain spectroscopy and imaging of artificial RNA

Bernd M. Fischer, Matthias Hoffmann, Hanspeter Helm, Rafal Wilk, Frank Rutz, Thomas Kleine-Ostmann, Martin Koch, and Peter Uhd Jepsen
Opt. Express 13(14) 5205-5215 (2005)

Enhancement of spectral resolution and accuracy in asynchronous-optical-sampling terahertz time-domain spectroscopy for low-pressure gas-phase analysis

Takeshi Yasui, Kohji Kawamoto, Yi-Da Hsieh, Yoshiyuki Sakaguchi, Mukesh Jewariya, Hajime Inaba, Kaoru Minoshima, Francis Hindle, and Tsutomu Araki
Opt. Express 20(14) 15071-15078 (2012)

Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon

Jianming Dai, Jiangquan Zhang, Weili Zhang, and D. Grischkowsky
J. Opt. Soc. Am. B 21(7) 1379-1386 (2004)

References

  • View by:
  • |
  • |
  • |

  1. D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
    [Crossref] [PubMed]
  2. J. E. Pederson and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28(10), 2518–2522 (1992).
    [Crossref]
  3. S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
    [Crossref] [PubMed]
  4. F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
    [Crossref]
  5. A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55(1), 65–108 (1983).
    [Crossref]
  6. L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
    [Crossref]
  7. M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
    [Crossref]
  8. D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).
  9. D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
    [Crossref]
  10. R. P. Lowndes, “High pressure far infrared spectroscopy of ionic solids,” IEEE Trans. Microw. Theory Tech. 22(12), 1076–1080 (1974).
    [Crossref]
  11. D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ii. far-infrared spectra of some complex chlorides MI2MCl6,” J. Chem. Soc., Dalton Trans. 4, 407–410 (1974).
    [Crossref]
  12. D. M. Adams and S. K. Sharma, “Vibrational spectroscopy at very high pressures—XX Raman and far-IR study of the phase transition in paratellurite,” J. Phys. Chem. Solids 39(5), 515–519 (1978).
    [Crossref]
  13. D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ix. far-i.r. Spectra of some hexa-ammine complexes of Ni(ii) and Co(iii),” Inorg. Chim. Acta 19, 49–50 (1976).
    [Crossref]
  14. S. Kimura and H. Okamura, “Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions,” J. Phys. Soc. Jpn. 82(2), 021004 (2013).
    [Crossref]
  15. J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
    [Crossref]
  16. J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
    [Crossref]
  17. B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
    [Crossref]
  18. W. A. Challener and J. D. Thompson, “Far-infrared spectroscopy in diamond anvil cells,” Appl. Spectrosc. 40(3), 298–303 (1986).
    [Crossref]
  19. R. J. Chen and B. A. Weinstein, “New diamond-anvil cell design for far infrared magnetospectroscopy featuring in situ cryogenic pressure tuning,” Rev. Sci. Instrum. 67(8), 2883–2889 (1996).
    [Crossref]
  20. V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
    [Crossref]
  21. W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
    [Crossref]
  22. H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
    [Crossref]
  23. C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
    [Crossref]
  24. A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
    [Crossref] [PubMed]
  25. A. Pereverzev and T. D. Sewell, “Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate,” Chem. Phys. Lett. 515(1-3), 32–36 (2011).
    [Crossref]
  26. K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
    [Crossref]
  27. K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
    [Crossref]
  28. M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
    [Crossref]
  29. D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
    [Crossref] [PubMed]
  30. T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
    [Crossref]
  31. A. Borysow and L. Frommhold, “Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,” Astrophys. J. 311, 1043–1057 (1986).
    [Crossref]
  32. W. E. Acree, Jr. and J. S. Chickos, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J. Linstrom and W.G. Mallard, ed. (NIST, 2016).
  33. Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
    [Crossref]
  34. Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  35. I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
    [Crossref]
  36. C. C. Mjojo, “Order-disorder phenomena. 2. order-disorder phase-equilibria in d-systems and l-systems of camphor and related compounds,” J. Chem. Soc., Faraday Trans. II 75(0), 692–703 (1979).
    [Crossref]
  37. G. S. Agarwal and S. R. Shenoy, “Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions,” Phys. Rev. A 23(5), 2719–2723 (1981).
    [Crossref]
  38. P. W. Bridgman, “Polymorphism at high pressures,” Proc. Am. Acad. Arts Sci. 52(3), 91–187 (1916).
    [Crossref]
  39. E. Grüneisen, “Theorie des festen Zustandes einatomiger elemente,” Ann. Phys. (Berlin) 344(12), 257–306 (1912).
    [Crossref]
  40. R. Zallen, “Pressure-Raman effects and vibrational scaling laws in molecular crystals: S8 and As2S3,” Phys. Rev. B 9(10), 4485–4496 (1974).
    [Crossref]
  41. T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
    [Crossref]

2017 (1)

F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
[Crossref]

2015 (2)

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

2014 (2)

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

2013 (2)

A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
[Crossref] [PubMed]

S. Kimura and H. Okamura, “Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions,” J. Phys. Soc. Jpn. 82(2), 021004 (2013).
[Crossref]

2011 (1)

A. Pereverzev and T. D. Sewell, “Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate,” Chem. Phys. Lett. 515(1-3), 32–36 (2011).
[Crossref]

2010 (1)

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

2008 (1)

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

2006 (1)

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

2005 (1)

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

2003 (2)

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

2001 (1)

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

2000 (4)

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

1999 (2)

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

1998 (1)

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

1996 (2)

C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
[Crossref]

R. J. Chen and B. A. Weinstein, “New diamond-anvil cell design for far infrared magnetospectroscopy featuring in situ cryogenic pressure tuning,” Rev. Sci. Instrum. 67(8), 2883–2889 (1996).
[Crossref]

1992 (1)

J. E. Pederson and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28(10), 2518–2522 (1992).
[Crossref]

1989 (1)

T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
[Crossref]

1986 (2)

W. A. Challener and J. D. Thompson, “Far-infrared spectroscopy in diamond anvil cells,” Appl. Spectrosc. 40(3), 298–303 (1986).
[Crossref]

A. Borysow and L. Frommhold, “Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,” Astrophys. J. 311, 1043–1057 (1986).
[Crossref]

1983 (1)

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55(1), 65–108 (1983).
[Crossref]

1981 (2)

D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).

G. S. Agarwal and S. R. Shenoy, “Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions,” Phys. Rev. A 23(5), 2719–2723 (1981).
[Crossref]

1979 (1)

C. C. Mjojo, “Order-disorder phenomena. 2. order-disorder phase-equilibria in d-systems and l-systems of camphor and related compounds,” J. Chem. Soc., Faraday Trans. II 75(0), 692–703 (1979).
[Crossref]

1978 (1)

D. M. Adams and S. K. Sharma, “Vibrational spectroscopy at very high pressures—XX Raman and far-IR study of the phase transition in paratellurite,” J. Phys. Chem. Solids 39(5), 515–519 (1978).
[Crossref]

1976 (1)

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ix. far-i.r. Spectra of some hexa-ammine complexes of Ni(ii) and Co(iii),” Inorg. Chim. Acta 19, 49–50 (1976).
[Crossref]

1974 (3)

R. P. Lowndes, “High pressure far infrared spectroscopy of ionic solids,” IEEE Trans. Microw. Theory Tech. 22(12), 1076–1080 (1974).
[Crossref]

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ii. far-infrared spectra of some complex chlorides MI2MCl6,” J. Chem. Soc., Dalton Trans. 4, 407–410 (1974).
[Crossref]

R. Zallen, “Pressure-Raman effects and vibrational scaling laws in molecular crystals: S8 and As2S3,” Phys. Rev. B 9(10), 4485–4496 (1974).
[Crossref]

1916 (1)

P. W. Bridgman, “Polymorphism at high pressures,” Proc. Am. Acad. Arts Sci. 52(3), 91–187 (1916).
[Crossref]

1912 (1)

E. Grüneisen, “Theorie des festen Zustandes einatomiger elemente,” Ann. Phys. (Berlin) 344(12), 257–306 (1912).
[Crossref]

Adams, D. M.

D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).

D. M. Adams and S. K. Sharma, “Vibrational spectroscopy at very high pressures—XX Raman and far-IR study of the phase transition in paratellurite,” J. Phys. Chem. Solids 39(5), 515–519 (1978).
[Crossref]

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ix. far-i.r. Spectra of some hexa-ammine complexes of Ni(ii) and Co(iii),” Inorg. Chim. Acta 19, 49–50 (1976).
[Crossref]

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ii. far-infrared spectra of some complex chlorides MI2MCl6,” J. Chem. Soc., Dalton Trans. 4, 407–410 (1974).
[Crossref]

D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
[Crossref]

Agarwal, G. S.

G. S. Agarwal and S. R. Shenoy, “Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions,” Phys. Rev. A 23(5), 2719–2723 (1981).
[Crossref]

Armitage, N. P.

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

Barrio, M.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Berg, R. W.

D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).

Bian, H.

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Birge, R. R.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Borysow, A.

A. Borysow and L. Frommhold, “Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,” Astrophys. J. 311, 1043–1057 (1986).
[Crossref]

Bridgman, P. W.

P. W. Bridgman, “Polymorphism at high pressures,” Proc. Am. Acad. Arts Sci. 52(3), 91–187 (1916).
[Crossref]

Bryant, C. H.

C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
[Crossref]

Cardona, M.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

Ceolin, R.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Challener, W. A.

Chang, S.

F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
[Crossref]

Chen, L.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Chen, R. J.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

R. J. Chen and B. A. Weinstein, “New diamond-anvil cell design for far infrared magnetospectroscopy featuring in situ cryogenic pressure tuning,” Rev. Sci. Instrum. 67(8), 2883–2889 (1996).
[Crossref]

Chen, S.

F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
[Crossref]

Clergent, Y.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Coles, M. C.

D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
[Crossref]

Davies, P. B.

C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
[Crossref]

Delaney, S. P.

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Durou, C.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Dzyubenko, A. B.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

Endo, S.

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

Espeau, P.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Fan, F.

F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
[Crossref]

Findlay, J. D.

D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
[Crossref]

Fischer, B. M.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Frommhold, L.

A. Borysow and L. Frommhold, “Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,” Astrophys. J. 311, 1043–1057 (1986).
[Crossref]

Galan, J.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Ge, L.

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Grüneisen, E.

E. Grüneisen, “Theorie des festen Zustandes einatomiger elemente,” Ann. Phys. (Berlin) 344(12), 257–306 (1912).
[Crossref]

Herold, G. S.

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Hillebrecht, J. R.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Hirono, T.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Hosako, I.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Hoshina, H.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Ikemoto, Y.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Iwamoto, T.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Jayaraman, A.

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55(1), 65–108 (1983).
[Crossref]

Jeon, S.

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Jepsen, P. U.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Jiang, Z. X.

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Jin, Y.

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kamadak, M.

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

Kasai, Y.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Keiding, S. R.

J. E. Pederson and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28(10), 2518–2522 (1992).
[Crossref]

Kim, G.

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

Kimura, H.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Kimura, S.

S. Kimura and H. Okamura, “Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions,” J. Phys. Soc. Jpn. 82(2), 021004 (2013).
[Crossref]

Kobayashi, M.

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

Korter, T. M.

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Laurens, M.

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

Laurita, N. J.

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

Leng, W.

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Lowndes, R. P.

R. P. Lowndes, “High pressure far infrared spectroscopy of ionic solids,” IEEE Trans. Microw. Theory Tech. 22(12), 1076–1080 (1974).
[Crossref]

Markelz, A. G.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Matsumoto, T.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Matsunami, M.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Matsuo, H.

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Matsuo, T.

T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
[Crossref]

McCombe, B. D.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Mittleman, D. M.

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Miyagi, H.

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Mjojo, C. C.

C. C. Mjojo, “Order-disorder phenomena. 2. order-disorder phase-equilibria in d-systems and l-systems of camphor and related compounds,” J. Chem. Soc., Faraday Trans. II 75(0), 692–703 (1979).
[Crossref]

Moriwaki, T.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Nagata, S.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

Nagumo, T.

T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
[Crossref]

Nanba, T.

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

Neumann, V. A.

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

Nickel, D. V.

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Nickel, H. A.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Nishikawa, K.

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Ohtake, H.

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Okamura, H.

S. Kimura and H. Okamura, “Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions,” J. Phys. Soc. Jpn. 82(2), 021004 (2013).
[Crossref]

Otani, C.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Pan, L.

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

Payne, S. J.

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ix. far-i.r. Spectra of some hexa-ammine complexes of Ni(ii) and Co(iii),” Inorg. Chim. Acta 19, 49–50 (1976).
[Crossref]

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ii. far-infrared spectra of some complex chlorides MI2MCl6,” J. Chem. Soc., Dalton Trans. 4, 407–410 (1974).
[Crossref]

D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
[Crossref]

Pederson, J. E.

J. E. Pederson and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28(10), 2518–2522 (1992).
[Crossref]

Pereverzev, A.

A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
[Crossref] [PubMed]

A. Pereverzev and T. D. Sewell, “Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate,” Chem. Phys. Lett. 515(1-3), 32–36 (2011).
[Crossref]

Pickles, C. S. J.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

Rietvel, I. B.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Ruf, T.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

Ruggiero, M. T.

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

Saitow, K.

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Sarukura, N.

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Sears, T. J.

C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
[Crossref]

Seta, T.

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Sewell, T. D.

A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
[Crossref] [PubMed]

A. Pereverzev and T. D. Sewell, “Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate,” Chem. Phys. Lett. 515(1-3), 32–36 (2011).
[Crossref]

Sharma, S. K.

D. M. Adams and S. K. Sharma, “Vibrational spectroscopy at very high pressures—XX Raman and far-IR study of the phase transition in paratellurite,” J. Phys. Chem. Solids 39(5), 515–519 (1978).
[Crossref]

Shenoy, S. R.

G. S. Agarwal and S. R. Shenoy, “Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions,” Phys. Rev. A 23(5), 2719–2723 (1981).
[Crossref]

Shimokawa, Y.

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Singh, S. K.

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Sivachenko, A.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

Sivachenko, A. Y.

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

Suga, H.

T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
[Crossref]

Sussmann, R.

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

Tamarit, J. L.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Thompson, D. L.

A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
[Crossref] [PubMed]

Thompson, J. D.

Tischler, J. G.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Tominaga, K.

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Veglio, N.

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Walther, M.

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Weinstein, B. A.

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

R. J. Chen and B. A. Weinstein, “New diamond-anvil cell design for far infrared magnetospectroscopy featuring in situ cryogenic pressure tuning,” Rev. Sci. Instrum. 67(8), 2883–2889 (1996).
[Crossref]

Whitmire, S. E.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Williams, A. D.

D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).

Wolpert, D.

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Xu, S.

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Zallen, R.

R. Zallen, “Pressure-Raman effects and vibrational scaling laws in molecular crystals: S8 and As2S3,” Phys. Rev. B 9(10), 4485–4496 (1974).
[Crossref]

Zhan, H.

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Zhao, K.

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Zheng, J.

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

B. A. Weinstein, J. G. Tischler, R. J. Chen, H. A. Nickel, B. D. McCombe, A. B. Dzyubenko, and A. Sivachenko, “High-pressure studies of semiconductors in the far-infrared: donor states in quasi-2D,” Acta Phys. Pol. A 98(3), 241–257 (2000).
[Crossref]

AIP Adv. (1)

V. A. Neumann, N. J. Laurita, L. Pan, and N. P. Armitage, “Reduction of effective terahertz focal spot size by means of nested concentric parabolic reflectors,” AIP Adv. 5(9), 097203 (2015).
[Crossref]

Ann. Phys. (Berlin) (1)

E. Grüneisen, “Theorie des festen Zustandes einatomiger elemente,” Ann. Phys. (Berlin) 344(12), 257–306 (1912).
[Crossref]

Appl. Spectrosc. (1)

Astrophys. J. (1)

A. Borysow and L. Frommhold, “Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K,” Astrophys. J. 311, 1043–1057 (1986).
[Crossref]

Biophys. J. (1)

S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, “Protein flexibility and conformational state: a comparison of collective vibrational modes of wild-type and D96N bacteriorhodopsin,” Biophys. J. 85(2), 1269–1277 (2003).
[Crossref] [PubMed]

Chem. Phys. (1)

M. Walther, B. M. Fischer, and P. U. Jepsen, “Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared,” Chem. Phys. 288(2-3), 261–268 (2003).
[Crossref]

Chem. Phys. Lett. (2)

A. Pereverzev and T. D. Sewell, “Molecular dynamics study of the effect of pressure on the terahertz-region infrared spectrum of crystalline pentaerythritol tetranitrate,” Chem. Phys. Lett. 515(1-3), 32–36 (2011).
[Crossref]

K. Saitow, H. Ohtake, N. Sarukura, and K. Nishikawa, “Terahertz absorption spectra of supercritical CHF3 to investigate local structure through rotational and hindered rotational motions,” Chem. Phys. Lett. 341(1-2), 86–92 (2001).
[Crossref]

Chin. Phys. B (1)

W. Leng, L. Ge, S. Xu, H. Zhan, and K. Zhao, “Pressure-dependent terahertz optical characterization of heptafluoropropane,” Chin. Phys. B 23(10), 107804 (2014).
[Crossref]

Geophys. Res. Lett. (1)

C. H. Bryant, P. B. Davies, and T. J. Sears, “The N2 pressure broadening coefficient of the J = 1 ← 0 transition of 1H35Cl measured by tunable far infrared (TuFIR) spectroscopy,” Geophys. Res. Lett. 23(15), 1945–1947 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

J. E. Pederson and S. R. Keiding, “THz time-domain spectroscopy of nonpolar liquids,” IEEE J. Quantum Electron. 28(10), 2518–2522 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Fan, S. Chen, and S. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 8500111 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

R. P. Lowndes, “High pressure far infrared spectroscopy of ionic solids,” IEEE Trans. Microw. Theory Tech. 22(12), 1076–1080 (1974).
[Crossref]

Inorg. Chim. Acta (1)

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ix. far-i.r. Spectra of some hexa-ammine complexes of Ni(ii) and Co(iii),” Inorg. Chim. Acta 19, 49–50 (1976).
[Crossref]

J. Chem. Eng. Data (1)

Y. Clergent, C. Durou, and M. Laurens, “Refractive index variations for argon, nitrogen, and carbon dioxide at λ = 632.8 nm (He−Ne laser light) in the range 288.15 K ≤ T ≤ 323.15 K, 0 < p < 110 kPa,” J. Chem. Eng. Data 44(2), 197–199 (1999).
[Crossref]

J. Chem. Phys. (2)

A. Pereverzev, T. D. Sewell, and D. L. Thompson, “Molecular dynamics study of the pressure-dependent terahertz infrared absorption spectrum of α- and γ-RDX,” J. Chem. Phys. 139(4), 044108 (2013).
[Crossref] [PubMed]

D. M. Adams, R. W. Berg, and A. D. Williams, “Vibrational spectroscopy at very high pressures. part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure,” J. Chem. Phys. 74, 2800 (1981).

J. Chem. Soc., Dalton Trans. (1)

D. M. Adams and S. J. Payne, “Spectroscopy at very high pressures. part ii. far-infrared spectra of some complex chlorides MI2MCl6,” J. Chem. Soc., Dalton Trans. 4, 407–410 (1974).
[Crossref]

J. Chem. Soc., Faraday Trans. II (1)

C. C. Mjojo, “Order-disorder phenomena. 2. order-disorder phase-equilibria in d-systems and l-systems of camphor and related compounds,” J. Chem. Soc., Faraday Trans. II 75(0), 692–703 (1979).
[Crossref]

J. Korean Phys. Soc. (1)

Y. Jin, G. Kim, and S. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).

J. Phys. Chem. A (1)

D. V. Nickel, S. P. Delaney, H. Bian, J. Zheng, T. M. Korter, and D. M. Mittleman, “Terahertz vibrational modes of the rigid crystal phase of succinonitrile,” J. Phys. Chem. A 118(13), 2442–2446 (2014).
[Crossref] [PubMed]

J. Phys. Chem. Solids (1)

D. M. Adams and S. K. Sharma, “Vibrational spectroscopy at very high pressures—XX Raman and far-IR study of the phase transition in paratellurite,” J. Phys. Chem. Solids 39(5), 515–519 (1978).
[Crossref]

J. Phys. Condens. Matter (1)

M. Kobayashi, T. Nanba, M. Kamadak, and S. Endo, “Proton order-disorder transition of ice investigated by far-infrared spectroscopy under high pressure,” J. Phys. Condens. Matter 10(49), 11551–11555 (1998).
[Crossref]

J. Phys. Soc. Jpn. (2)

L. Chen, M. Matsunami, T. Nanba, T. Matsumoto, S. Nagata, Y. Ikemoto, T. Moriwaki, T. Hirono, and H. Kimura, “Far-infrared spectroscopy of electronic states of CuIr2Se4 at high pressure,” J. Phys. Soc. Jpn. 74(4), 1099–1102 (2005).
[Crossref]

S. Kimura and H. Okamura, “Infrared and terahertz spectroscopy of strongly correlated electron systems under extreme conditions,” J. Phys. Soc. Jpn. 82(2), 021004 (2013).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani, and Y. Kasai, “Precise measurement of pressure broadening parameters for water vapor with a terahertz time-domain spectrometer,” J. Quant. Spectrosc. Radiat. Transf. 109(12-13), 2303–2314 (2008).
[Crossref]

Phys. Chem. Chem. Phys. (1)

D. V. Nickel, M. T. Ruggiero, T. M. Korter, and D. M. Mittleman, “Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor,” Phys. Chem. Chem. Phys. 17(10), 6734–6740 (2015).
[Crossref] [PubMed]

Phys. Rev. A (1)

G. S. Agarwal and S. R. Shenoy, “Observability of hysteresis in first-order equilibrium and nonequilibrium phase transitions,” Phys. Rev. A 23(5), 2719–2723 (1981).
[Crossref]

Phys. Rev. B (2)

R. Zallen, “Pressure-Raman effects and vibrational scaling laws in molecular crystals: S8 and As2S3,” Phys. Rev. B 9(10), 4485–4496 (1974).
[Crossref]

T. Ruf, M. Cardona, C. S. J. Pickles, and R. Sussmann, “Temperature dependence of the refractive index of diamond up to 925 K,” Phys. Rev. B 62(24), 16578–16581 (2000).
[Crossref]

Phys. Status Solidi, B Basic Res. (1)

J. G. Tischler, S. K. Singh, H. A. Nickel, G. S. Herold, Z. X. Jiang, B. D. McCombe, and B. A. Weinstein, “Pressure tuning of many-electron impurity interactionsin confined semiconductor structures,” Phys. Status Solidi, B Basic Res. 211(1), 131–136 (1999).
[Crossref]

Physica E (1)

J. G. Tischler, H. A. Nickel, B. D. McCombe, B. A. Weinstein, A. B. Dzyubenko, and A. Y. Sivachenko, “Hydrostatic pressure dependence of negative-donor-ion singlet and singlet-like bound magnetoplasmon transitions in doped GaAs/AlGaAs quantum wells,” Physica E 6(1-4), 177–181 (2000).
[Crossref]

Proc. Am. Acad. Arts Sci. (1)

P. W. Bridgman, “Polymorphism at high pressures,” Proc. Am. Acad. Arts Sci. 52(3), 91–187 (1916).
[Crossref]

Rev. Mod. Phys. (1)

A. Jayaraman, “Diamond anvil cell and high-pressure physical investigations,” Rev. Mod. Phys. 55(1), 65–108 (1983).
[Crossref]

Rev. Sci. Instrum. (2)

R. J. Chen and B. A. Weinstein, “New diamond-anvil cell design for far infrared magnetospectroscopy featuring in situ cryogenic pressure tuning,” Rev. Sci. Instrum. 67(8), 2883–2889 (1996).
[Crossref]

K. Saitow, K. Nishikawa, H. Ohtake, N. Sarukura, H. Miyagi, Y. Shimokawa, H. Matsuo, and K. Tominaga, “Supercritical-fluid cell with device of variable optical path length giving fringe-free terahertz spectra,” Rev. Sci. Instrum. 71(11), 4061–4064 (2000).
[Crossref]

Thermochim. Acta (2)

T. Nagumo, T. Matsuo, and H. Suga, “Thermodynamic study on camphor crystals,” Thermochim. Acta 139, 121–132 (1989).
[Crossref]

I. B. Rietvel, M. Barrio, N. Veglio, P. Espeau, J. L. Tamarit, and R. Ceolin, “Temperature and composition-dependent properties of the two-component system d- and l-camphor at ‘ordinary’ pressure,” Thermochim. Acta 511(1-2), 43–50 (2010).
[Crossref]

Other (2)

W. E. Acree, Jr. and J. S. Chickos, “Thermophysical properties of fluid systems,” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J. Linstrom and W.G. Mallard, ed. (NIST, 2016).

D. M. Adams, J. D. Findlay, M. C. Coles, and S. J. Payne, “Vibrational spectroscopy at very high pressures. part v. far-infrared spectra of inert pair hexahalogeno-complexes,” J. Chem. Soc., Dalton Trans. (4): 371–376 (1976).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Diagrams of the experimental setup. (a) The overall layout of the setup. THz pulses are generated by the PCA, and then send into the pressure cell. The reflected wave is detected by EO sampling method. (b) A closer view of the pressure cell. A diamond window and a sample spacer forms a sample chamber that allows solid or liquid sample placed inside. The high pressure is introduced from the high pressure inlet and released from the high pressure outlet.
Fig. 2
Fig. 2 (a) A typical time-domain waveform (blue) of an empty 2 mm long sample chamber. The 1st and 2nd pulses correspond to the reflection from the front and back surfaces of the diamond window; the 3rd, 4th, and 5th pulses correspond to the multiple reflections inside the sample chamber. The waveform is truncated with an asymmetric Tukey window (red) to keep only the 3rd pulse. (b) the amplitude spectrum of the truncated time-domain waveform.
Fig. 3
Fig. 3 THz time-domain waveforms of the nitrogen under pressures of 0.02 MPa (blue) and 8.94 MPa (red) measured at 100.8 K. At this temperature, nitrogen is in gas phase under 0.02 MPa pressure and in liquid phase under 300 MPa. At each pressure, the 1st pulse corresponds to the reflection from the back surface of the diamond window, and the 2nd pulse corresponds to the double-pass transmission through the sample. The shift of the 2nd pulse in time-domain comes from the different refractive index of gaseous and liquid nitrogen.
Fig. 4
Fig. 4 THz refractive index (from measurements) (data points) and mass density (from literature [32]) (curves) of nitrogen as functions of pressure at 100.8 K (blue), 109.9 K (magenta), 113.8 K (green), 125 K (orange), 130.7 K (black) and 140 K (red). For temperatures below Tc = 126 K (the first four curves), discontinuities of the refractive indices and densities can be observed, meaning that there is a sharp gas-liquid phase transition. For temperatures above Tc (the last two curves), there is no discontinuity, meaning that the nitrogen is now a supercritical fluid, where the distinction between gas and liquid is blurred.
Fig. 5
Fig. 5 (a) Time domain waveform and (b) absorption spectrum of the HT phase (red) and LT phase (blue) of R-camphor.
Fig. 6
Fig. 6 Phase transition temperature of R-camphor as a function of pressure. The phase transition temperatures and pressures are linearly related, with slopes 0.222 and 0.225 K/MPa for heating (red) and cooling (blue), respectively. The result consists with the literature [35] (green) very well. Inset: time-domain peak to peak amplitudes of the THz radiation as the sample was cooled down from 257 to 242 K and then heated up to 257 K with the temperature changing rate 0.1 K/min at 27.6 MPa fixed pressure. Hysteresis in the phase transition was observed.
Fig. 7
Fig. 7 Pressure-dependent spectra of the LT phase R-camphor measured at 223 K. (a) The absorption coefficient as a function of frequency at 0.1 (yellow) and 35 (magenta) MPa. The first three phonon peaks are labeled as the 1st, 2nd and 3rd peak. (b) Pressure-dependence of the peak frequencies of the 1st (red), 2nd (blue) and 3rd (green) phonon resonances.
Fig. 8
Fig. 8 Correlation between βγ and phonon frequency. The three data points correspond to the 1st, 2nd and 3rd phonon resonances, respectively. The compressibility-normalized Grüneisen parameter is independent of frequency, indicating that the three resonances are all intermolecular modes. The red line indicates the average value of βγ, which is about 0.56 per GPa. The error bars represent the uncertainties from the slopes of the peak-frequency-vs-pressure data.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n( ω )= n 0 + c 2ωd arg[ R( ω ) ],
α( ω )= 1 d ln{ ( n d +n ) 2 n 0 ( n d + n 0 ) 2 n | R( ω ) | },
n=1+μρ,
γ i = V ω i ω i V = 1 β ω i ω i P ,
β γ i = 1 ω i ω i P .
α V =βγ C V ρ,

Metrics