Abstract

Lateral resolution in confocal microscope is limited by the size of pinhole. In this paper, we attempt to introduce a new method to achieve structured detection through using spatial light modulator (SLM) to improve it. SLM modulates the Airy disk amplitude distribution according to the detection function in collection arm. Instead of using CCD to capture spot images and modulate them with numerical analysis in virtual structured detection (VSD), this method uses SLM to accomplish these aims with higher imaging rates. Based on simulation and the experiment results, it can be found that coherent transfer function expands and the resolution is 1.6 times as large as that of conventional confocal microscope.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution scanning laser microscopy through virtually structured detection

Rong-Wen Lu, Ben-Quan Wang, Qiu-Xiang Zhang, and Xin-Cheng Yao
Biomed. Opt. Express 4(9) 1673-1682 (2013)

Rapid super-resolution line-scanning microscopy through virtually structured detection

Yanan Zhi, Rongwen Lu, Benquan Wang, Qiuxiang Zhang, and Xincheng Yao
Opt. Lett. 40(8) 1683-1686 (2015)

References

  • View by:
  • |
  • |
  • |

  1. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [Crossref]
  2. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
    [Crossref] [PubMed]
  3. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  4. T. R. M. Sales and G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22(9), 582–584 (1997).
    [Crossref] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  6. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  7. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [Crossref]
  8. P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
    [Crossref] [PubMed]
  9. P. Křížek, I. Raška, and G. M. Hagen, “Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585–24599 (2012).
    [Crossref] [PubMed]
  10. T. Lukeš, P. Křížek, Z. Švindrych, J. Benda, M. Ovesný, K. Fliegel, M. Klíma, and G. M. Hagen, “Three-dimensional super-resolution structured illumination microscopy with maximum a posteriori probability image estimation,” Opt. Express 22(24), 29805–29817 (2014).
    [Crossref] [PubMed]
  11. C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
    [Crossref]
  12. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [Crossref] [PubMed]
  13. J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
    [Crossref] [PubMed]
  14. R. W. Lu, B. Q. Wang, Q. X. Zhang, and X. C. Yao, “Super-resolution scanning laser microscopy through virtually structured detection,” Biomed. Opt. Express 4(9), 1673–1682 (2013).
    [Crossref] [PubMed]
  15. Y. Zhi, R. Lu, B. Wang, Q. Zhang, and X. Yao, “Rapid super-resolution line-scanning microscopy through virtually structured detection,” Opt. Lett. 40(8), 1683–1686 (2015).
    [Crossref] [PubMed]
  16. B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
    [Crossref]
  17. M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (Singapore World Scientific, 1996).

2016 (1)

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (1)

2012 (1)

2009 (3)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

2005 (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1999 (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

1997 (1)

1987 (1)

1977 (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Benda, J.

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Carlini, A. R.

Chhun, B. B.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Choudhury, A.

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Conchello, J. A.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Fliegel, K.

Griffis, E. R.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Gustafsson, M. G. L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Hagen, G. M.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Klíma, M.

Kner, P.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Krížek, P.

Lichtman, J. W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lu, J.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Lu, R.

Lu, R. W.

Lukeš, T.

Min, W.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Morris, G. M.

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ovesný, M.

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Raška, I.

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Sales, T. R. M.

Sheppard, C. J. R.

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Švindrych, Z.

Tan, J.

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

Wang, B.

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

Y. Zhi, R. Lu, B. Wang, Q. Zhang, and X. Yao, “Rapid super-resolution line-scanning microscopy through virtually structured detection,” Opt. Lett. 40(8), 1683–1686 (2015).
[Crossref] [PubMed]

Wang, B. Q.

Wilson, T.

Winoto, L.

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

Xie, X. S.

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Yao, X.

Yao, X. C.

Zhang, Q.

Zhang, Q. X.

Zhang, S.

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

Zhi, Y.

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zou, L.

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

Biomed. Opt. Express (1)

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Nano Lett. (1)

J. Lu, W. Min, J. A. Conchello, X. S. Xie, and J. W. Lichtman, “Super-resolution laser scanning microscopy through spatiotemporal modulation,” Nano Lett. 9(11), 3883–3889 (2009).
[Crossref] [PubMed]

Nat. Methods (2)

P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6(5), 339–342 (2009).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “Sted microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[Crossref]

Opt. Acta Int. J. Opt. (1)

C. J. R. Sheppard and A. Choudhury, “Image formation in the scanning microscope,” Opt. Acta Int. J. Opt. 24(10), 1051–1073 (1977).
[Crossref]

Opt. Commun. (1)

B. Wang, L. Zou, S. Zhang, and J. Tan, “Super-resolution confocal microscopy with structured detection,” Opt. Commun. 381, 277–281 (2016).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[Crossref]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Other (1)

M. Gu, Principles of Three Dimensional Imaging in Confocal Microscopes (Singapore World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic of the basic confocal microscope system.

Fig. 2
Fig. 2

Pinhole of conventional confocal system and structured detection system (a) standard pinhole (b) pinhole with detection function.

Fig. 3
Fig. 3

Normalized IPSF of confocal microscope (CM) and structured detection confocal microscope (SD-CM) with same size pinhole.

Fig. 4
Fig. 4

CTF of system (a) CTF of wide field microscope (WM), confocal microscope (CM) and structured detection confocal microscope (SD-CM). The simulation wavelength λ is 632.8nm, NA of objective and collection lenses are 0.1. The frequency of structured detection function f 0 is NA /λ , and the detection r d is 0.61λ / NA . (b) CTF of illumination arm in SD-CM. (c) Fourier transform of detection function in SD-CM. (d) CTF of collection arm in SD-CM. (e) CTF of SD-CM system.

Fig. 5
Fig. 5

The result of spot modulated by SLM. (a) and (d) are structured functions, (b) and (e) are modulated results by VSD, (c) and (f) are modulated spot by SLM.

Fig. 6
Fig. 6

Relationship between grey value and transmission efficiency of SLM.

Fig. 7
Fig. 7

SD-CM microscope. (a) The schematic diagram of experimental set up (b) The set-up picture of SD-CM. The SLM consists of 1024 × 768-pixels whose size are 26μm and its transmission efficiency is higher than 0.3. The theoretical resolution of this system without structured detection is 6.33 μm.

Fig. 8
Fig. 8

Implementation of the structured detection imaging on the resolution test target. (a) and (c) Image of the test target acquired by conventional confocal microscope. (b) and (d) Reconstructed super-resolution image by SD-CM.

Fig. 9
Fig. 9

Normalized intensity curves of conventional confocal microscope and structured detection confocal microscope in specified areas. (a) Normalized intensity along x direction of the area specified by rectangle 1 in Figs. 8(a) and Figs. 8(b). (b) Normalized intensity along y direction of the area specified by rectangle 2 in Figs. 8(a) and Figs. 8(b). (c) Normalized intensity along x direction of the area specified by rectangle 3 in Figs. 8(c) and Figs. 8(d). (d) Normalized intensity along y direction of the area specified by rectangle 4 in Figs. 8(c) and Figs. 8(d). (e) Normalized intensity along x direction of the area specified by rectangle 5 in Figs. 8(c) and Figs. 8(d). (f) Normalized intensity along y direction of the area specified by rectangle 6 in Figs. 8(c) and Figs. 8(d).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

A( r )= h 1 ( r 1 )o( r s - r 1 ) h 2 ( r 1 + r 2 )d r 1 D( r 2 )d r 2 .
APSF( r s )=h( r s )×[ h( r s )D( r s ) ].
IPSF( r s )= | h( r s )×[ h( r s )D( r s ) ] | 2 .
m( x,y )=A+2cos( 2π f 0 x )+2cos( 2π f 0 y ).
D( x,y )=circ( x 2 + y 2 r d )×m( x,y ).
D( x )=rect( x r d )m( x )={ 2cos( 2π f 0 x ), x< r d 0 , others .
{ D( x ) }=[ J 1 ( 2π r d f x ) f x ][ δ( f x f 0 )+δ( f x + f 0 ) ] =[ J 1 ( 2π r d ( f x f 0 ) ) f x f 0 ]+[ J 1 ( 2π r d ( f x + f 0 ) ) f x + f 0 ].
D 1 ( x )=rect( x r d ) m 1 ( x )={ 2+2cos( 2π f 0 x ), x< r d 0 , others .
D 2 ( x )=rect( x r d ) m 2 ( x )={ 2, x< r d 0, others .
A( x )=h( x )×{ h( x )[ D 1 ( x ) D 2 ( x ) ] }=h( x )×[ h( x )D( x ) ].
CTF( f x )=CT F 1 ( f x ){ CT F 2 ( f x )×[ D( x ) ] }.
CT F SD-CM ( f x )=rect( f x ){ rect( f x )×[ J 1 ( 2π r d ( f x f 0 ) ) ( f x f 0 ) + J 1 ( 2π r d ( f x + f 0 ) ) ( f x + f 0 ) ] }.
m 1D ( x,y )= 1 2 [ 1+cos( 2π f 0 x ) ].
m 2D ( x,y )= 1 2 [ 1+0.5×cos( 2π f 0 x )+0.5×cos( 2π f 0 y ) ].
T=f( g ).
g= f 1 ( T ).

Metrics